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FOREWORD

This report was prepared by Battelle Memorial Institute, Columbus,
Ohio, on Contract No. AF 33(038)-8682. Work at Battelle Memorial Insti-

tute was initiated as a project of the Materials Laboratory, Research Divi-
sion, and is being accomplished under Expenditure Order No. R605-233SR3A.
The work is being administered by the Materials Laboratory, Research
Division, Air Development Command, with Mr. L. D. Richardson as
Project Engineer. This report is the Second Annual Report, covering the
period 18 November 1950 to 22 March 1952.

Among those who cooperated in the study were W. H. Duckworth,
A. D. Schwope, 0. K. Salmassy, R. L. Carlson, and H. Z. Schofield
of Battelle Memorial Institute.
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ABSTRACT

A critical survey was made of the significant theories of strength, for
guidance in developing relationships among the strength properties of
ceramics. The mechanistic theories appeared to offer the greater possi-
bilities, but no theory treated all controlling variables, and all theories
lacked adequate experimental support. The need remains apparent for a
unified theory and supporting experimental data.

The principal laboratory effort was on the size dependence of strength.
Both plaster and a nickel-titanium carbide body decreased in apparent
strength with increases in gage-section size in bend tests. In an extensive
program of bend tests on plaster to record details, strength decreased with
increases in either gage-section length or gage-section breadth in about the
same manner. However, the apparent strength increased with increases in
gage-section depth. The possibility of the true size effect' s being masked
by size-dependent testing variables was indicated. There was no trend
apparent in the standard deviation of strength values with variations of gage-
section length, breadth, or depth.

Further information was obtained on the effect of the type of test on
mechanical properties. Of particular interest is the fact that, with suffici-
ent refinement, the bend and torsion tests appear to yield practically the
same strength values. The development and refinement of tests was con-
tinued in an effort to obtain the precise mechanical-property data needed
in this program.
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INTRODUCTION

There is an active interest at present in the applicability of ceramic
materials for aircraft construction materials, particularly for parts of gas
turbines and jet engines. Design and evaluation studies are required. The
proper and efficient execution of these studies requires knowledge of the
mechanical behavior of ceramic bodies. Previous uses for these materials
have created little need for such knowledge, and little pertinent information
exists. The objective of this report is to augment this information.

An ultimate aim of the current work is to define strength properties
by expressions that include the influence of each external factor, thus per-
mitting design or evaluation studies with the fewest possible test data.
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External factors to be considered include:

1. Stress system
2. Size

3. Rate of stressing
4. Temperature
5. Porosity

It is conceivable that this work could also establish the basic mechanisms

of fracture; therefore, it might guide ceramic research in the development
of bodies with improved internal structures. Research on flow and fatigue

behavior is to be included when the studies of fracture are sufficiently ad-

vanced.

The above objectives require careful control of all possible variables

through proper tests and testing techniques. It follows that much of the

work must be devoted to analyses and development of means for accurately

measuring stresses and strains. The types of test in the program are:

1. Tension
2. Compression
3. Torsion
4. Bend
5. Combined stress

Of primary concern in selecting materials for specimens is repro-

ducibility, fabricability, and mechanical representation of one of the general

types of ceramic bodies. Potential utility in aircraft also is of interest,

but becomes secondary, in this fundamental study, to problems in deter-

mining the effects of external variables.

This is a rather long-range effort. The work was started in October,
1948, on a subcontract under Contract No. W33-038 ac 14105 between the

Air Force and the RAND Corporation. It was taken over as a direct Air
Force sponsorship during November, 1949.

The work for RAND is covered in RAND Report R-209, "Mechanical

Properties of Ceramic Bodies", 31 August 1950. The bulk of this work was

with porous and nonporous specimens of a silicate porcelain. Sintered-

alumina specimens were used in a few investigations. Room-temperature,

compression, torsion, and bend tests were made. The materials were
elastic to fracture and exhibited isotropic behavior. Good correlation was

obtained between elastic properties from the various tests, and an expres-

sion relating porosity and elastic moduli was developed. Observed strength

phenomena could be explained qualitatively to some extent on the basis of a

flaw-type mechanism of fracture.

Research during the first year of the direct Air Force sponsorship,
from November, 1949, to November, 1950, is covered by AF Technical
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Report No. 6512, April, 1951. This work was limited to Kl51A, a nickel-
titanium carbide product of Kennametal, Inc. In room-temperature tension,
compression, torsion, and bend tests, the material exhibited slight plastic
flow. Relationships between elastic properties indicated isotropy. The

mode of fracture in K151A was that normally found in brittle materials.
Different fracture strengths were observed for the different types of test -
tension, compression, torsion, and bending. During the course of testing,
it became increasingly apparent that material variables in K151A were too
great for proper execution of the research. A better controlled material

would have to be selected. In view of this difficulty, any attempted quanti-
tative correlation of strength values from the different tests was of question-
able worth. Also, the problem was complicated by the observed plastic flow
and by the presence of some bending in the tension, compression, and tor-
sion tests. However, for the general case of brittle fracture, the data indi-

cated again that a flaw-type mechanism offered the most likely basis for
developing correlations. Elements involved include the theoretical strength,
magnitude of the stress peaks, and a statistical function defining the number
of peaks. A study of these elements was suggested.

The development and refinement of equipment and techniques has been
carried on continuously in this research. During the period covered by AF
Technical Report No. 6512, particular attention was given to high-
temperature strain measurements.

The present report covers progress during the second year of direct
Air Force sponsorship. The period covered is from 18 November 1950 to
22 March 1952. Work was recessed during three months of this period,
however, for contractural processing.

During the period of this report, particular attention was given to the
effect of size on fracture strength, using bend tests on plaster. Such work
was considered essential to evaluating and developing theories from a flaw-
type mechanism of fracture. As an important concurrent effort, a critical
survey was undertaken of significant theories on strength.

REVIEW OF THEORIES OF STRENGTH

Historically, the strength properties of solids have been studied along
two different lines. The oldest, the phenomenological, attempts to describe
the reaction of a solid to an external stress system. Criteria of failure are
postulated with the assumption that the solid is isotropic, homogeneous,
and a continuum. By various methods of combining stresses, the effects of
multiaxial stresses can be predicted. However, no single theory has been

found to be applicable to all materials. This is not surprising in view of the
many different types of mechanical behavior to be found. For example,

some materials exhibit considerable flow before fracture, while others
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fracture without any visible evidence of flow. The phenomenological ap-
proach, however, is important and useful in that, for any one material, a

set of relations may be established which allows design calculations to be

made. Thus, the material can be used to its fullest advantage.

The second approach is mechanistic in nature. Here, the strength
properties are analyzed from the point of view of what makes the material
fail. These theories are relatively new, and are concerned with the fact

that materials may fracture at stresses 100 to 1000 times below their theo-

retical breaking strength. The presence of defects such as cracks, disloca-

tions, and other possible flaws is postulated, and the behavior of a material

containing such flaws is predicted. Although this approach appears to be the
more fundamental of the two. a thorough understanding of the phenomeno-

logical theories is necessary for intelligent use of the mechanistic theories.

Phenomenological Theories

Each of the phenomenological theories is based upon some assumed
criterion for failure. In general, these theories place no restrictions on
the nature of the material to which they are to be applied. They have been

used to predict failure in both brittle and ductile materials.

All of the phenomenological theories assume homogeneity and isotropy
of the material, and the criteria which these theories set up are based on
relations of stress and strain evolved from the classic theory of elasticity.

These relations are of particular significance in the analysis of combined

stresses.

As a guide to the phenomenological approach, it is well to review the
methods of analysis applicable to combined stresses. Since the biaxial

stress condition is found more commonly than triaxial stresses in service,
the development of the theories will be limited as much as possible to the

biaxial case.

In the general case of two-dimensional or biaxial stress, the free-
body diagram shown in Figure 1 is appropriate. The forces acting on the
tz plane are unknown, but vary as the angle 0 varies. There is one position

for which the normal force Fn is a maximum. To find this, the relationship
between Fn and 0 must be determined first. This is done by considering the

summation of forces in the n direction, as follows:

Fn = Fx sin 0 + Fyx cos 0 + Fy cos 0 + Fxy sin0. (1)

To convert the forces to stress components, it is necessary to divide by
the area over which the forces act. Equation (1) can be rewritten in terms

of stresses, assuming rxy = "yx-.

* The symbol a denotes a normal stress; the symbol r denotes a shear stress.
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"ydy

S,

FIGURE I. GENERAL BIAXIAL-FORCE DIAGRAM A-2185

an = ax sing2  + ay cos?0 + rxy sin 20. (2)

To determine the angle 0 for which un becomes a maximum or minimum,

it is necessary only to differentiate Equation (2) with respect to 0; thus:

d gn - 2 Ox sinO cosQ - 2 y sinO cosO + 2 rxy cos 2 O= 0.dO

Then, using 2 sin 0 cos0 = sin 20, the direction for the maximum or mini-

mum normal stress is given by:

tan 20 = - xy (3)
aX --a'ax ay

In order to calculate the magnitude of the normal stress from Equation (2),

sin 20 and cos 20 must be determined. From examination of Equation (3).

these are:

-2 r
sin 20 xy (4)

+[( x-oy)- + 4 Txy2] 1/2

and

cos 20 = y (5)

[( ax-y)2 + 4rxy2]1/2
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Using sin2 O = (1 - c ) and cos20 = (1 + cos 20) and substituting into

Equation (3), the expression for the maximum and minimum normal stresses
becomes:

(ax -ay )2 (6)y1/
an 2 [ + (xy

The stresses an(max) and an(min) commonly are called principal stresses

and will be designated as or and a 3 . The reason for not using a. as the

minimum normal stress will become evident later, where intermediate

stresses will be used and designated as a 2 "

The values of the maximum and minimum shearing stresses ( rs) can

be derived similarily and the final expression is:

[ax -)2 + /2(]
= +( + . (7)

The criteria of maximum normal and shearing stresses have been

used extensively in the development of theories describing a material' s
reaction to multiaxial stress systems. All of the theories have been de-

veloped on the basis of the free-body diagram in Figure 1, and the develop-
ment of Equations (1) through (7) will be referred to frequently in the

following discussion of these theories.

Maximum-Stress Theory

The maximum-stress theory assumes, in the case of brittle materials,
that fracture starts in an element subjected to combined stresses when the

maximum principal stress becomes equal to the fracture stress of the ma-

terial in tension. Stated analytically for the three-dimensional case:

or = ± or , (8)

where af = fracture strength in simple tension, and where the principal

stresses al, Oa2 and a 3 are such that:

a < al > g3

In this form, the theory assumes equal strengths in compression and ten-

sion. Often it is convenient to designate the compression stress as a 3 and
then the breaking strength (of) in compression becomes:

- Uf = a3 , (9)
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where a? < a3 > al"

Expressed in terms of the stress components, the fracture stress is given
as:

a x+ ay or ay 2 r 1/
f = + y + Txy , (10)

which is identical to Equation (6) for the maximum normal stress.

A modified form of this theory assumes that, if one of the three prin-
cipal stresses is positive (tension), the limiting value is less than if all the
stresses are negative (compression). Although this is closer to the truth

for materials exhibiting brittle behavior, it is extremely artifical and can-

not be considered an important relationship.

The maximum-stress theory is used commonly in design when ma-

terials exhibiting brittle behavior are used. Two of the more common

criteria for brittle behavior are that the fracture surface is normal to the

specimen axis in a tension test and at an angle of 450 in a torsion test.

Such behavior will be assumed for materials classed as brittle in this report.

Maximum-Strain Theory

This theory assumes that failure occurs when the positive elastic
strain in the direction of one of the principal stresses becomes equal to the

value at failure in tension. The principal elastic strains are given by the
relationships:

CI = ± L [I- Z +'3

C2 = + V (a0 + ) , (11)

and 1 1
a3 = a - v (al + aj2

3~ E L 3

where v = Poisson' s ratio,

E = Young' s modulus.

If, then, the limiting strain in tension is given as c. failure will occur when
fi) 6?2 or c3 become equal to e. This can be stated in terms of stresses.

If af =E' then

af = l - v ( a + 3 ) (i)
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In terms of stress components and considering only planar stress,

Equation (12) becomes:

( ( ;j Oy) + (l + v) + o j (13)

If the stress system is uniaxial compression, the lateral strains are

positive and equal to v oc/E. Then the material is expected to fail when

the lateral strain equals the longitudinal strain at failure in a tension test.

The compression stress at failure is then of/V) which is 3 to 8 times the

tension-failure stress, depending on Poisson' s ratio. It can be seen that,

if a hydrostatic presJure were superposed on the compression stress, the

material could not fracture and brittle materials could be made to flow.

Such an effect was found by Bridgman in tests on the brittle materials,

glass, Carboloy, and alumina.

Maximum-Shear-Stress Theory

This theory assumes that failure of materials occurs when the shear

stress reaches a maximum. It should be stated that this theory has been

used widely when failure is defined as a yielding, rather than fracturing.

Thus, its applicability to materials exhibiting no flow is not immediately
apparent. The theory was used first because it was noticed that yielding

occurred on planes making an angle of 450 with the principal stress direc-

tion. In terms of principal stresses, the maximum shear stress is given

by:

1 '3I- . (14)

For the limiting case of tension or compression,

°1 °3
m Y 2

therefore: of 2 rTm =1 - a3 (15)

The presence of an intermediate stress in a triaxial stress system is not

considered to affect the value of the critical shear stress. In terms of

stress components, Equations (14) and (15) yield:

Of2 (o..o-) T2] l /

f = Z + rxy 1/2(16)

which is identical in form to Equation (7).
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It is noted that this theory, as well as the maximum-normal-stress
theory, does not assume strain to be proportional to stress, as does the
maximum-strain theory. However, it has the disadvantage that inter-
mediate stresses are not considered operative. This may be the case for
flow criteria, but it is well known that such stresses alter fracture
strengths.

Maximum-Strain-Energy Theory

The quantity of strain energy stored per unit volume also has been
used as a criterion for failure. Failure is expected, according to this law,
when the strain energy stored as a result of combined stresses equals the
strain energy at failure in tension. The total strain energy stored per unit
volume in a multiaxial stress system is given as:

W = 1/2 ('1 'l + '2 '2 + '3 '3) (17)

This can be restated in terms of stresses by substituting Equation (11) for
the strains, resulting in the expression:

W 1/ZE (012 + a + 032) - v/E (al02 + a2.3 + 3 '1)" (18)

The strain energy at fracture in tension is given by:

OfZ

Wf =- "z (19)

By combining Equations (18) and (19), the expression for the fracture stress
becomes:

af = [12 + a 22+ a32 - 2v(aIa +U2 a3 + F30a 1/ (20)

or, expressed in terms of stress components:

Of, a = x y + a z + 2 V(0x y y+ ay z zo+ % x)

+ 2 (1 + v) (rxy 2 + yz + rzx )] (21)

This theory assumes strain to be proportional to stress, and the
tension and compression strengths to be equal. This theory has been super-
seded largely by the distortion-energy theory, so little will be said of it
here. Also, the maximum-strain-energy theory has been applied to the
plastic flow of solids.
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Distortion-Energy Theory

This theory assumes that failure begins when the energy of shear of
any stress system reaches the energy at failure in simple tension. It has

been extremely successful in describing the flow of ductile materials, and
is felt to have potential utility in the field of brittle behavior. The distortion-

energy theory assumes strain to be proportional to stress and considers

that the total energy stored in a material is composed of two parts, dis-
tortion and dilatation. The expression for dilatation is given by:

aI +a +a 3
3

which is referred to often as the hydrostatic stress. The strain energy due

to the dilatation then is given as:

Uv 3 v -v 3v (al + U + a) (23)Uv 3 2 2 v 1 2 3

Also, since:

-- l ) v (24)

then:

Uv 2 V (a + r +a 3 ) a (25)

To obtain the distortion energy (V), Equation (25) is subtracted from the
total strain energy, as given by Equation. (18), with the result:

6E (¢1 - a2)2 + (a? - a3) + (a3 - ad) " (26)

The distortion energy at failure in tension (a, = af) is given then as:

V (), f (27)

Therefore, failure occurs when the energy in a combined stress system
equals that in uniaxial tension at failure. The distortion-energy relation

becomes:
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a,2-- ) 2 + (a 2 -a 3 )2 + (3 - i) 1/2

(28)

a=[a" + +a a1 a + a 2 3 +o 3 a 1 ] 1/2

or, in terms of stress components:

(29)
1I y)2+ 2 2zx1 1/2

af a x - a + ('y -a)2 + (az -ax)a + 6a(ry- + r z+

_ý {TLX y' yz~ Z ' ' yz zxj

If the stress system is two dimensional, Equation (29) reduces to:

af = (ax + ay2 -axay + 3 r xy 2)/ /2 (30)

The distortion-energy theory assumes equal strengths in compression
and tension. As has been mentioned, it has been successful mainly in de-
scribing the yielding or flow of materials.

Internal-Friction Theory

This modification of the maximum-shear-stress theory was proposed
to account for the fact that failure in tension did not occur on a 450 plane.
It is formulated by assuming that there is a resistance to sliding on the
plane of shear (dzdt in Figure 1) which is composed of the shearing stress
plus a frictional component. The general statement of this theory is:

rm 1 a, - a 3 ) + (a l+ O3) sin a]M cos a

where a = tan-If;

f = coefficient of friction.

For simple tension:

r o (I + sina)

m 2 cosa

and the failure under combined stresses relative to the tension-failure
stress is given as:
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(0 - sin a) (33)
af= a1-1 3 (1 + sina)

It is seen that) if a 0, Equation (33) reduces to that of the maximum-

shear-stress law [Equation (15)].

If sin a = 0.2, the compression strength should be 1.5 times the ten-

sion strength, and the torsion strength should be 0. 6 times the tension
strength. Thus, by choosing the correct value of sin a. the experimental
evidence of the compression strength' s being higher than the tension

strength in brittle materials can be supported analytically.

Mohr Theory

Another variation in the maximum-shear theory was introduced by
Mohr 2 . It assumes that some plane other than the plane dzdt in Figure 1
is the plane of maximum shear stress. Mohr' s theory was developed
graphically, and only the final equations will be stated in this brief review.

The maximum principal shear stress is given by:

= ( O a3 sin 2 0 Y (34)

and the maximum normal stress is given by:

an= "( + 03) + (03 +0 . (35)Cn 2 27)

Since the maximum shearing stress is the criterion for failure, the failure
stress is given as:

a1

m 2

and (36)

a f= 2 r = U1

where 0 = 450.

This theory also can be .expressed in the more useful form given by

Timoshenko2 which relates the failure strengths in shear (rfs), tension

(oft), and compression (-fc):

,ft -fcr as a "(37)
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If Uft -fc) then rfs 1/Z aft. Since, in brittle materials, the strengths

in compression and tension are different, Equation (36) enables adjustment
for this fact. If the compression strength is 8 times the tension strength,
the shear strength should be 0. 89 of the tension strength.

Mohr' s theory is very general and, because of its flexibility, has
been modified by many investigators to fit their data. Therefore, it loses
importance and becomes little more than an empirical observation, the
form of which varies with the material.

A modification of Mohr' s theory has been proposed by Marin3 which
recognizes the difference between compression and tension strengths. It
can be stated analytically as:

(y/x)2 (, - y) 2 (-4k -4k 2 ) + (2y/x) (x2 _ y? + x-y) + (x + y)2 (38)

+ 2 (x + y) + (1 + 2k)2 (x - y)? - 4 (k + k-) = 0

where x = 7l/ac)

y = a 2 /1ac

ac = compressive strength,

k = constant.

The constant k can be evaluated if the ratio of the tension to the compres-
sion strength is known, and Equation (38) solved for the case of pure ten-
sion. The modification permits the effects of any multidimensional stress
system to be evaluated without assuming the tension and compression
strengths to be equal. However, it is semiempirical and is rather cumber-
some to use for design work.

Stress-Invariant Theory

In connection with the work on this project, a relationship has been
suggested by L. R. Jackson of the Battelle staff to account for the difference
between the tension and compression strengths of ceramics. In a solid with
normal stresses acting on the three mutually perpendicular faces, the
equilibrium of the stresses on any plane through the solid can be written as:

a x = 1 + ryx m+ r n,

a = r +a m+r x y zy n (39)

Uz = rxz 1 + ryT m + Uz n,
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where ox'y Uy' az' = components of the resultant stress a' on any plane,

1, m, n = direction cosines of this plane.

Now, if this plane carries only a normal stress a and no shearing stress,
the components become:

x

Uy a m

If a principal plane of stress is considered, Equation (39) can be expressed
in determinant form as:

x 0 yx rzx

rxy oy - or = 0 (40)

rxz ryz az - o

Evaluating this determinant, the term 13 and the coefficients I, and I2 of
2

the a and a terms are found to be:

I1I = a x+ a y+ a z (41)
1 x y z (1

=axay+yz+zX(xy+yz 2 + rzx2 (42)

13 00 a + 2 r r r - a r - rx Z - a t (43)= xy z yz xz xy x yz -yxz, zrxy (43

where I, 12, and 13 are commonly called the stress invariants. The hydro-

static stress is seen to be Ii/3 and, in the common usage of these in-
variants, is not considered to influence the plastic flow of materials. Using
this principal, Nadai 4 has subtracted the hydrostatic component from Equa-
tion (42), and derived a criterion for the flow of solids known as the octa-

hedral shearing stress. He assumed that the oblique plane cutting through
the solid, which was used for the derivation of Equation (39), makes an
angle of 54°451 with the principal axis. His relationship can be expressed
then as:

roct = 1/3 1(01 - 02)2 + (o2 - U3)2 + (03 - 01)]" 1/2 P (44)
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or, in terms of stress components:

roct = 1/3 [(ax - ay) 2 + (ay- az)2 + (az- ax)2

+ 6 (rxy2 + ryz2 + rzx2)] 1/2 (45)

Although its form is rather different, the octahedral stress can be con-
sidered to be the equivalent of 12 multiplied by a constant. Since this form
has the hydrostatic component subtracted from it, and realizing that frac-
ture of solids differs from flow in that fracture is dependent upon the hydro-
static pressure, it is reasonable to add the invariant I1 to Equation (45).
This could be accomplished by combining it directly in roct; however, it

was found that better agreement was obtained by adding I, to Equation (45),
so that:

f = 1/ 3 (ox - ay)2 + (ay - Z)2 + (Oz _ ax)

+6(( 2x Y z + ax +ay +az (46)

Then, for tension:

"Ua = o + -a =0.805a (47)
f 3 x 3 x

and, for torsion:

1/2 (48)
af = 2*xy=O0 8l 6 Txy (

The relation between the torsion and tension strengths becomes:

a = 1.015 rT . (49)
x xy

The fracture criterion for compression (ax') is given as:

= 21/2 + -0
af = 3 ax + = 0. 138 ax (50)

and the relationship between tension and compression strengths:

ax -5.84 ox (51)
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The usual method of making compression tests in the laboratory re-
sults in a stress system which is not pure compression, as pointed out in

AF Technical Report No. 6512. Assuming that no bending stresses are
present, stresses still arise from the restraint of differential lateral

strains by friction between the specimen and the loading faces. Considering

these additional stresses, it follows that:

aI k, ' =ka (52)x y z

Substituting Equation (52) into Equation (50), the general expression for the
compression strength is given as:

3f L- (2)/2 (1 - k) +1 + 32 k] * (53)

The effect of these other stresses can be seen by letting k in Equation (52)
equal 0. 05; then the ratio between the compression and tension strengths

increases to 12. 7. It is possible, by adding a sufficient hydrostatic com-

ponent, that the material will have an infinite fracture strength, and failure

will occur by some other mechanism, such as plastic flow.

Equally valid relationships can be derived if, instead of the octahedral-
stress theory, the effective-stress theory is used. The two differ only in

the constant; in the octahedral theory it is 1/3, in the effective-stress theory

it is l/F 2  If the latter is used, the relations given by Equations (47)
through (51) become:

for tension:

a ax+ 1.33 (54)f X 3

and for torsion:

af =F =xy = 1.73 rxy (55)

and the ratio between tension and torsion:

ox = 1.3 rxy. (56)

The criterion for fracture in compression then becomes:

afa x ~ ~07' (57)Uf a= - + 3x = -0. 67 •x (57

and the ratio of compression to tension strengths:

aX I = 2 ax . (58)
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The equation analogous to Equation (53) is then:

f =(-0.67 + 1. 66 k) ' (59)of

and, if k = 0.05, the ratio between the compression and tension strengths
increases to 2. 3. The rate of increase of strength with increasing values
of k is much slower using Equation (59) than using Equation (53). Using
Equation (53) and the ratio of strength in torsion and tension, it should be
possible to evaluate the relative merits of the two sets of relationships.

General Comments on Phenomenological Theories

It is evident that there are a large number of theories purporting to
describe relationships among the strength properties under various stress
systems. To date, there is no single theory which will correlate the prop-
erties of all materials. For materials which exhibit plastic flow, the
maximum-shear-stress, the distortion-energy, and the octahedral- or
effective-stress theories provide the best fit. For materials which evidence
little or no plastic flow before fracture (brittle behavior), the maximum-
normal-stress and maximum-strain theories and variations of the Mohr
theory have been successful. However, none of these predict the material
to be stronger in compression than in tension. To satisfy this requirement,
the stress-invariant theory has been proposed.

Many problems remain to be solved. Experimental work shows that
the effect of size is quite significant in brittle materials. Brittle materials
supposedly contain many microflaws. Therefore, the application of sta-
tistics to strength properties is necessary, and should be a valuable tool in
understanding the size effect. However, statistics can be applied only when
the basic relationships among strengths under various stress systems are
known. The phenomenological approach to the strength problem is a logical
starting point for such work.

Mechanistic Theories

The mechanistic theories attempt to explain fracture phenomena,
rather than relate strength values, as do the phenomenological theories.
All of these theories assume the presence in a material of discontinuities
of such a nature as to cause stress concentrations whose effect is to reduce
the apparent breaking strength to a value far below the theoretical strength.
The magnitude of the stress concentrations resulting from the discontinuities
is larger than can be predicted by the classic theory of elasticity, causing
the obvious inference that the flaws are of submicroscopic size.

Although the mechanistic theories postulate a mechanism of fracture,
they still require an assumption of the criterion for fracture, as do the
phenomenological theories. Fracture still is considered to occur at some
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condition of stress or strain. Nevertheless, the mechanistic theories have

the advantage of providing a word picture of fracture phenomena.

Griffith Crack Theory

Griffith developed his theory in an attempt to explain the extraordi-

nary weakening of materials by surface scratches whose areas were but a

minute part of the cross-sectional area of the material. He assumed that

the scratches or cracks acted as stress concentrators and that, at their

extremities, the stress reached approximately the theoretical strength of

the material. The calculations of Inglis5 were used to determine the

stresses and strains resulting from typical scratches. The predictions of

these calculations were borne out by tests.

Griffith started from the "theorem of minimum energy". This theory

states that an elastic body distorted by external forces reaches an equilib-

rium condition when the potential energy of the whole system has been

minimized. To obtain his fracture theory, he added that the equilibrium

position is one in which the body has fractured if, in fracturing, the system

has passed from the stressed state to the fractured state by a continuous

decrease in potential energy. The increase of potential energy which is

occasioned by the new surface formed by the initiation or extension of a

crack must not be neglected, however. In a stressed body, the elastic

energy must provide this surface energy, which is 2 a for a unit cross

section, where a is the specific surface energy.

Theoretically, the fracture strength of a flawless brittle substance

should be the value of its "intrinsic pressure", and can be calculated from:

S ZaE 2 (60)

m Fa

where Sm = the molecular cohesion (theoretical strength),

E =Young' s modulus,

a = the atomic spacing.

Griffith assumed that, in the regions of stress concentration around flaws,

the theoretical strength of the material is reached in very small volumes of

the specimen. From the Inglis calculations, Griffith, by assuming the

crack to be a very flat elliptical hole of major axis 2c, found the maximum

stress at the ends of the crack to be:

=20 c (61)

r

where a = the macroscopic stress perpendicular to the major axis of the

crack,
r the radius of curvature at the ends of the major axis.
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It is seen that the maximum stress will increase toward infinity as
the radius of curvature r approaches zero; however, it becomes impossible
to conceive a radius of curvature smaller than the interatomic spacing of the
material. If the value of the interatomic spacing a is substituted for r in
Equation (61), which is then divided by Equation (60), the result is the
applied stress which will cause a microscopic stress equal to the theoreti-
cal strength at the ends of a crack with r = a. The relation then becomes:

aa = E (62)

2 c

As will be seen later, this value differs only slightly from the value given
by Griffith [Equation (68)] and may be explained quite well by the inappli-
cability of Hooke' s Law at the high stress values which are obtained.

Surface cracks of depth c produce approximately the same stress con-
centration as internal cracks of length 2c. From the stress distribution
around an elliptical hole, the increase of elastic energy of a plate by the
introduction of a crack is:

W c =_2 (63)e E

per unit thickness, if the plate is thin (thickness <2c). If the case of plane

strain holds (thickness >2c), the increase is:

2

We 1 2 -1CE a2  (64)

where v = Poisson' s ratio.

The work done on the system when the crack is introduced is twice the in-
crease in elastic energy, and the surface energy of the crack is

Ws = 4 a c (65)

per unit thickness of plate. Griffith assumed that, when the potential energy
of the external distorting forces is enough to cover the increase of elastic
energy and surface energy of a crack increment, the crack will spread. If
the crack propagates, the total diminution of the potential energy of the
system is:

We - Ws = - 4a c (66)E

Since the potential energy of the system is being diminished, the system has
not yet reached its equilibrium, which is postulated to be a fractured con-
dition. In order to obtain equilibrium, the loss of potential energy of the
system must be a maximum, or:
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d (W - WS) = 2 V a c2 - 4 a 0. (67)
dc e 5 E

Solving for the stress a:

a= 2E (68)
7Tc

for a thin plate, and, for a thick plate:

a 2 -- (69)
nc (1 -• a)

Thus, the value of applied stress needed to achieve equilibrium
(fracture) of a body is predicted. Further calculations have shown that

assumption of a cleavage-type crack, or an ellipsoidal (penny-shaped)
crack, gives values only slightly different from those obtained assuming

Griffith' s elliptical crack.

Fracture Under Biaxial and Triaxial Stresses. Griffith derived a
condition of fracture under biaxial stress directly from the Inglis calcula-
tions. The assumption was made that the isotropic material contains cracks,
of equal lengths and of equal radii of curvature at their ends, which are

oriented randomly. The Inglis solution then gives the maximum stress at
the end of the crack having the most dangerous orientation as a function of
two principal stresses aI and a3 * Griffith then assumed that fracture oc-
curs when the maximum local stress present at the end of the most danger-
ous crack reaches the value of molecular cohesion. These combinations of
stresses at which fracture takes place can be expressed by equations in
which the only physical constant is the tensile strength for uniaxial stress-
ing (K). These equations represent the fracture criteria for biaxial stress-
ing. If tensile stresses are regarded as positive and a0> a3, the fracture

criterion is:

if 3 al + 03> 0, fracture occurs when:

S1 = K ; (70)

if 3 a1 + a3 < 0, fracture occurs when:

(aI - a3)2 + 8K (o0 + 03) = 0. (71)

If aI and o3 are plotted as rectangular coordinates, Equation (71) is that of

a parabola which has its concave side in the direction of the bisector of the
negative a1 and g3 axes; Equation (70) is that of the vertical tangent of this
parabola. If all combinations of a1 and a3 are considered, and not only

those for which a1> u3, the fracture conditions have to be completed by:

a3 = K , (72)
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for 3 a 3 + a,> 0 when a 3 > a,. This is the horizontal tangent to the same

parabola.

According to this criterion, a brittle material can withstand any shear
stress, provided a sufficiently high hydrostatic stress is superposed.
Equation (71) shows that the hydrostatic pressure needed to prevent frac-

ture at a shear stress rm (=i1 - a3 )/Z is rmZ/4K. For uniaxial compres-

sion (a, = 0, a3 > 0), Equation (71) gives the strength as 8K, or the

compressive strength in brittle fracture should be eight times the tensile
strength. The Griffith biaxial criterion can be applied to triaxial states of
stress, since, in the approximations used, normal or shear stress in the
plane perpendicular to the edge of the crack cannot exert an appreciable
influence.

Number of Flaws. An important question raised by the Griffith theory
concerns the number of most effective cracks in the specimen. The scatter
of tensile strengths obtained from brittle materials indicates that the num-
ber of critically oriented cracks cannot be very large, and generally the
strength of a specimen must decrease with size due to the greater proba-
bility of its containing a dangerous cra~ck. Griffith found a definite size
effect in his experiments on glass fibres. The data are given in Table 1.
This size effect could be expressed approximately by Karmarsch' s formula:

B (73)

where S = the strength,

A =the strength of large specimens,

d = the diameter,

B = a constant.

Holland and Turner 6 used the Karmarsch-Griffith relation to explain varia-
tion of breaking strength as a function of width of specimens in bending
tests, while Smekal 8 declared that the relationship:

S = A 1 - B log d , (74)

gives numerical values which are in as good agreement with experimental
data as those of the Griffith form. This relationship has the added advan-
tage of having the same form as the formula which gives the tensile strength
as a function of loading velocity v:

S =A2 + B log v (75)

The strengths obtained from thin fibres by Griffith have been ex-
plained in various ways by different investigators. Some of the explanations
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TABLE 1. STRENGTH OF GLASS FIBRES, FROM GRIFFITH 7

Diameter, Breaking Stress, Diameter, Breaking Stress,

0. 001 in. psi 0. 001 in. psi

40. 00 24,900 0. 95 117,000

4.20 42,300 0. 75 134, 000

2.78 50,800 0. 70 164, 000

2.25 64, 100 0.60 185, 000

2. 00 79,600 0.56 154, 000

1.85 88,500 0.50 195, 000

1.75 82, 600 0.38 232, 000

1.40 85,200 0.26 332,000

1.32 99,500 0. 165 498, 000

1. 15 88, 700 0. 130 491,000
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have dealt with the effect of limiting the size of the flaws by the fibre

diameter, some with the decreased probability of containing a "dangerous"
flaw in the very small volume of the fibre, and some with the possibility of
changing molecular structure during the drawing process. However, the
"drawing process" itself seems to suggest the best interpretation of the
phenomenon. The flaws of most dangerous orientation, that is, normal to

the fibre axis, suffer the largest decrease in effectiveness, or may even
be "smeared out". Another theory says that, when the glass is drawn, a
thin surface layer is subjected to compressive stresses which tend to close
any surface flaws. This theory takes on added weight in the light of large
decreases in strength after aging or slight handling of the rods of fibres.
Such treatments might cause a penetration of this thin compressed layer.

Smekal 9 , on investigating the fracture surface of circular glass rods
broken in tension, found that a "mirror surface" was formed which had as
its initiation point the critical flaw. Extending from this flaw, the smooth
surface gradually gave way to a rough one. Smekal hypothesized that the
fracture proceeds quite slowly at first, and while so doing creates the mir-
ror surface in a plane normal to the applied stress. As the slow fracture
continues, the tensile stress applied to the remaining portion of the rod in-
creases, owing to the decrease of the effective cross section. and soon
reaches a value which causes flaws of a much less critical nature to begin
to propagate and meet the primary fracture surface in an area of increasing
roughness. At this point, the fracture progresses quite rapidly. From the
rough fracture surface obtained in the rapid-fracture area, it can be de-

duced that the total number of flaws present is quite large.

Temperature Effects. Although at low temperature the effects of rate
of loading and of temperature are small, they become increasingly impor-
tant at higher temperatures. This observation cannot be explained satis-
factorily by elastic theory, and molecular processes must be considered.
If U* is the amount of energy needed to break the molecular bond, the
activation energy, at the flaw edge, and U (< U*) is the elastic energy accu-
mulated due to loading, then at low temperature U must increase to U*
before fracture can occur. If the energy of thermal agitation of a bond (E)
is added to the elastic energy due to load (U), the loading of the rod neces-
sary to cause separation of the bond is decreased. However, the separation
of succeeding bonds must await the achievement of a thermal energy > E

so that the process is a slow one compared with bond separation not de-
pendent upon thermal energy. For constant values of loading, the speed of

the primary fracture should depend on the temperature. The rate at which
fracture proceeds depends upon the activation energy U* or the magnitude
of energy required to make the bond unstable, and upon the number of bonds

which possess enough energy to become unstable. The first condition is
self-explanatory; that is, the smaller the activation energy required, the
more rapidly fracture can take place. The second condition depends upon
the distribution of energy in the system. The number of bonds possessing

the required energy can be calculated from the Maxwell-Boltzmann Distri-
bution Law, which states that the number of bonds having an energy greater
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than c is proportional to e-U'/RT, where the ratio U- is the probability
RT

factor, and where R is the gas constant and T is the absolute temperature.
Then for states requiring large values of thermal energy c and at low tem-
peratures, the probability of obtaining the necessary activation energy is
very small. Hence, the probability of fracture's occuring in such a state
is small. As the temperature is increased, it can be seen that the proba-
bility of fracture increases.

Since fracture, as it is ordinarily thought of, occurred only after a
mirror surface, of considerable area in some cases, had been developed,
Smekal defined the term the "reduced tensile strength", Zo, as:

Zo = L/(q - s) , (76)

where L = the breaking load,

q = the total cross-sectional area of the rod,

s = the area of the mirror surface.

Smekal' s tests show that this value, Zo, is constant, as he had predicted.

Origin of Flaws. Poncelet 1 0 noted that, while many investigators
criticize the prediction of Griffith that a material has a compression strength
eight times its tensile strength, the criticisms are not leveled at Griffith's
mathematics, but at his postulate that cracks exist in the material in the un-
stressed state. To circumvent these criticisms, Poncelet hypothesized that
the flaws of Griffith (and Smekal) are not present, and proceeded from the
"Morse Curve" of atomic physics to a flaw-genesis theory. From this view-
point, the fraction of bonds, fo) having a thermal-energy level higher than
the energy U* required to rupture a bond between two atoms is:

f = -U*/kT (77)

where T = the absolute temperature.

When a tensile force is superposed upon the thermal agitation, the resulting
distortion energy cm increases the fraction of bonds whose atoms have
enough energy to break the bond. In a neighborhood of sufficient stress, the
number of these "potentially broken bonds" may increase to a density at
which a "potential flaw" is formed. The chances that the atoms of the
"potentially broken bonds" will form new alliances are considerable and,
thus, an actual flaw is formed from a "potential flaw", and stress-
concentrating factors are brought into play.

When the material is in compression, the fraction of "potentially
broken bonds" at a given stress is much lower than in tension, and a much
higher stress must be imposed in order to give equal probabilities of flaw
generation. When the flaws are generated before the compressive stress
reaches a value of eight times the tensile strength, the Griffith predictions
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of relative strengths should hold. In other cases, the flaws will not occur
until a higher value of compressive stress is obtained, and higher ratios of
compressive to tensile strengths result.

When a fracture is progressing slowly, only the bonds in the plane of
the fracture have a high enough stress value to allow an effective proba-
bility of bond rupture, and a "mirror surface" is produced. After a reduc-
tion in the effective cross-sectional area of a specimen, the stress values
at several bonds are high enough to give an effective probability of rupture,
and deviating fracture surfaces are formed. This causes the area of in-
creasing roughness surrounding the mirror surface, as found by Smekal.

Weibull' s Statistical Theory

Weibull 1 1 has developed a theory of strength of materials from the
elementary laws of statistics, in order to explain the scatter in results ob-
tained experimentally and which could not be explained by the classical
theory. If the proposition is allowed that a probability curve exists for the
fracture strength of materials, a theory of strength can be developed. Let
P be the probability of rupture at a stress a ; then P = f (a). For low values
of stress, P = 0, and for high values, P = 1.

If a given stress is applied to a rod, the probability of the rod' s with-
standing the load is 1 - P. When the length of the rod is doubled and the
same stress is applied as before, the probability of survival of the system
is:

1 - P 2-- (l - Pa)2  , (78)

where P 2 = the probability of rupture of the rod of length 2,

Pa = the probability of rupture of the rod of unit length.

From this, it is seen that, for a rod of any length L the general form would
be:

I - PL = (1 - Pa)L (79)

or
log (I - P L) = L log (I - Pa) "(80)

Since volume is proportional to length, and if Po is the probability distri-
bution of the length of rod which corresponds to unit volume:

log (l - P) = V log (l - Po) (81)

If B = - log (I - P), called the risk of rupture, it is found to be proportional

to the volume and to log (I - Po), which is a function of tensile stress, a,
alone. The risk of rupture of a small element dv is:
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d B =-log (1 - Po) dv , (82)

where log (1 - Po) is negative because 1 - Po< 1.

Therefore:

B =f n(a) dv , (83)

for an arbitrary distribution of stresses. The probability of rupture (P) is:

p -_ eB= 1 - efn(a)dv (84)

This equation expresses the fundamental law of an isotropic brittle material,
and the function n(o) expresses the strength of the material. In anisotropic
materials, the stress-coordinate system and direction must be taken into
account. For cases where fracture always is initiated at the surface, the
volume integral may be replaced by a surface integral:

Vf n(a)dv =AJn(a)da, (85)

or in case separate material functions apply to the surface layer and
interior:

P = 1 - e ()da86)

If N measured values are taken, and the distribution curve is obtained
from these values, the probability of a single value falling within an incre-

ment dais dP do, or the number of values falling within this range isda

dP
N-" da. The ultimate strength ab should be then:

00

abN aN dP d, (87)
b Jo dor

a= {defn(oa)dv

a b fadP = f (88)
= -o

or, integrating:

=$f n(a)db d, (89)
0O
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The standard deviation a of the value of the ultimate strength may be cal-
culated from the formula:

a = (o ob) d P (90)

or:

a2  e-f()vd(,-) - (91)

The assumption has been made in the foregoing derivations that a is
a one-dimensional tensile stress; therefore, it is scalar if the risk of rup-
ture is independent of stress direction. If there are arbitrarily distributed
forces, then o is to be replaced by another scalar which is determined by
the principal stresses, and this reduced stress may be used in the above
derivations. In other words, each combination of principal stresses re-
quires the use of a specific material function.

The material function n(a) is included in the above derivations. If the
function is defined by:

n(a) = k (-oo )m , (92)
P

where a is the strength determined from classical theory., E, and m is a
0A

constant which increases with perfection of the body. If m increases toward
infinity, the probability curve becomes discontinuous at the point a = a o
where it jumps from 0 to 1. The ultimate stress is then:

ab =J en(ad =v du = (93)

and the variance a2 is:

a2 = efn(a)dv d(aa) - Ob2 = J 0 d(a2) - aoo = 0. (94)

These two equations define the classical theory of strength, and show it to
be a special case of the general statistical theory. The factor O0 is seen to
be the classical strength of the material, and the variance is equal to zero,
the basis on which the classical theory is regarded as untenable in light of
experimental scatter in results.

Since one of the basic assumptions of the general statistical theory
was the existence of a probability curve which was a function of stress
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only, the material function n(a) is the crux of the theory and, while the

theory cannot be applied unless some specialization of the function is made,

the specific form of the function to be used in a particular stress system is

the result of assumption and, hence, a possible source of error. Weibull

found that, in the light of limited experimental data, good agreement could

be obtained by letting the material function be defined as:

n(a) = Km , (95)

where K and m are constants.
1

If K = -M the probability of rupture for volume V will be:
am
0

P = 1 - e 0) (96)

so that, for volume V = 1 and the stress a equal to the classical strength

U02 the probability of rupture is 0. 63. The "risk of rupture" in tension is

given thus as:

B = V(97)

The ultimate strength can be expressed as:

o m
a0 -Z

b foe dZ (98)b 1 /m
V

where Z = V/m
a

0
o • _ Zm

or, letting Im = ;e-e dZ ,

Im Co

-b= 1/m (99)

V

and the variance (a 2 ) is:

a 2  e d(a 2 ) ab 2
, (100)

Z
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Vor a Oo M/2 - Im " (101)

From the above equations, it may be seen that the ultimate strength and
standard deviation decrease with volume increases. That the ratios of

variance to strength are independent of volume and dependent upon the ex-
ponent m may be seen from:

a I m/2

b - 1 (lOZ)

Polyaxial Stresses. In reconsidering the one-dimensional stress
case, it is assumed that compressive stresses have no effect on the risk
of rupture, and the principal stress is located in the direction of the x axis.
The normal stresses which are included in the small spatial angle do contri-
bute to the risk of rupture B an amount n, (a) do, and, where the integra-
tion is carried over half the surface of the sphere:

V/2 /1
B = n(a) * 2rrsin 5dk= -ZIr n1 (a1 cos 2 ) d cos4 , (103)

or, if n1 = Klom :

B 2 Klam (104)
2m + 1

If n = Kaim, for a one-dimensional stress:

K 2m + 1 K (105)

If a1 and a3 are the principal stresses, the normal stress an is) from

Figure 2, for the two-dimensional case:

an = cos2 (a, cos 2 V+ a3 sin- ) , 106)

and dO = cosododo . (107)

The risk of rupture is then

B = 2 KJ J cos (2m + 1) 2  3 2 m (108)

o.Co
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This equation can be solved for various combinations of a, and u3 . In the
case of shear:

tango0 = 0=-1 , (109)
-03

where:

0 = 1/4 . (110)

Substituting this value of o into Equation (110), the risk of rupture for
shear becomes:

B = K1l cm Cos(2m + 1)€d€ cosnOd0 (111)

For a three-dimensional stress, a1 = a3 = a., the normal stress is

independent of the direction and the risk of rupture is:

B = (2m + 1) K a m . (112)

Bending. The risk of rupture of a rectangular beam subjected to pure
bending is:

mB (m + 1) 0) (13

or, since the risk of rupture in tension is B = V(-) , the ratio of bending

to tensile strengths is:

-b = (2m + 2)m . (114)at

Torsion. For a circular rod, the risk of rupture is:
Z m

m = 2 V K2 T (115)

where r = the maximum shearing stress.
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Tucker' s Modification. Tucker agreed with the Weibull analysis

only in part. Where Weibull assumed a "weakest link" hypothesis in the
development of his theory, Tucker said another method should be postulated
to interpret properly some of the experimental data which he obtained.
The weakest link theory, as the name implies, proposes that a specimen
composed of a single link (or small volume) will have a higher mean
strength than one composed of many links or elements. The standard de-
viation from the mean strength of the single-link specimens also will be
larger.

Values of the mean strength and standard deviation of strengths of

chains as a function of number of links, as developed by TippettI . were
applied by Tucker to changes of length of specimens in tension, compres-

sion, torsion, and bending, and to changes of depth of beams in bending.

Tucker proposed another theory, the strength-summation theory, to explain

changes in strength with changes in the cross-sectional area of specimens.
Here, the strength of the material was assumed to be independent of the
change in area, while the standard deviation, a, of the strength of the ma-
terial varied according to the equation:

k = al/aA , (116)

where a A = standard deviation of specimen of cross-sectional area A,

and a, = standard deviation of unit area.

A new combination theory was offered by Tucker. In this theory, the

calculation of strength is the same as for the weakest link theory, but the

calculation of standard deviation of strength is defined by the term kI/rI-

where kI is the standard deviation of a unit element, and n is the number
of elements. The predictions of modulus of rupture of a beam in bending

given by the three theories of strength are summarized below, with Hooke' s

Law assumed to apply until fracture:

Theory of Failure Modulus of Rupture, psi

Classical maximum 400
stress

Weakest link 470 ± 35

Combination 590 ± 120

The results obtained for the modulus of rupture from the combination theory

are approximately of the magnitude that Tucker estimated they should be,

and were in good agreement with his test results.

Frankel 4 discussed the general statistical theory, and the analyses

of Weibull and Tucker in particular. Since Frankel was interested largely
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in explaining the increase of modulus of rupture in beams in bending over
tensile strength, he derived Weibull' s equations to that end, and listed
values of the constant K in the following equation for different types of
loading:

-K V -0 O'e)

P=1-eKe (117)

where P = the probability of rupture,

e = lowest possible strength of specimen,

0, = classical tensile strength (constant - see Equation 96),
m = material function (constant).

The results for beams under various test conditions are given in Table 2.
From this table, the modulus of rupture will be smaller for third-point or
sixth-point loadings than for center-point loadings. Frankel also showed
that Tucker used a normal curve, in an attempt to avoid the specialization
of the probability curve that Weibull assumed. Not only did Tucker end
with an equation of exactly the same form as Weibull, but his hypothesis is
a specialization of Weibull' s, when m = 2.

TABLE 2. VALUES OF K FROM FRANKEL' S ANALYSIS

Type of Loading K

Pure bending 2(m12m+ 1)

1
Center-point loading 2(m + 1)2

2 11 [ 1
Third-point loading 3 2(m + I)?- + 3 2 (m + 1)

1 1F ] 2( 1
Sixth-point loading 3 +2mlZ L-
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Theory of Rate Processes as Applied
to Brittle Fracture

Background. The phenomenological and mechanistic theories of
strength suffer from one important defect. The variable, time, which
cannot be separated from the conduct of any critical test of a stressed body,
is not considered. In short, these theories do not consider the effect of
rate of loading or the possible effect of the length of time in which a body
remains at a certain stress level. Experimental evidence is available which
indicates a distinct effect of these two factors on the fracture of brittle ma-
terials.

A discussion has been included here on the theory of rate processes
and on how this theory can be applied to brittle materials to give a more
complete understanding of the phenomena of fracture. As such, this theory
is not a theory of fracture, but rather a theory of rate processes.

The theory is based primarily on the suggestions by S. Arrhenius15

that an equilibrium exists between inert and active molecules of a reactant,
and that only the active molecules can take part in the reaction or process.
The general equation expressing the variation of the specific rate of a proc-
ess with the temperature is:

r = A exp(-E/RT) , (118)

where E = the difference in heat content between the activated and the inert
molecules,

A = a quantity that is independent, or varies relatively little, of
temperature,

R = the gas constant,
T = the absolute temperature,
r = the rate of the process.

More recently, using the tools of quantum and statistical mechanicsl6

the theory of reaction rates has been advanced to a state which describes
most of the phenomena observed in nature. The end product of the theory
will be utilized in this discussion, as the derivation of basic relations is
lengthy and complex. If a material proceeds from State A to State B by the
addition of some external energy, an equilibrium between States A and B
occurs during this change. In other words, there is at any time an equilib-
rium between the amounts of A going to B and the amounts of B going to A.
This is given simply by the relation:

K* = rl/rZ (119)

where K* = equilibrium constant,
r = the rate of A going to B,

r = the rate of B going to A.2
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The over-all rate of the process is given by the relation:

kT K* (IZ0)
h

where k = Boltzmann' s constant,
h = Planck' s constant,
T = the absolute temperature,
r = the rate of the process.

The factor kT is a frequency factor, and represents the frequency with whichh

the activated complexes proceed to completion of the reaction. This is
represented graphically in Figure 3.

C

W

0
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C
0
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FIGURE 3. POTENTIAL BARRIER FOR A RATE PROCESS
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Therefore, any complex from A which reaches the top of the energy bar-
kTrier proceeds to State B with a frequency of h

Borrowing from thermodynamics, it is known that the equilibrium
constant K* may be expressed in terms of the free energy of the process as:

K*= exp(-AF*/RT) , (121)
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where AF* = the free energy of activation.

AF* represents the difference in energy between State A and the activated

state. Equation (120) can be rewritten then as:

r = kT exp(- AF*/RT) (122)

It is often convenient to use the energy and entropy of activation,
rather than the free energy. This is done by remembering from thermo-

dynamics that:

AF* = AH*-T- AS*

= E-T.AS* + RT , (123)

where AHN'* = heat of activation,
AS* = entropy of activation,

E = energy of activation.

Equation (122) can be rewritten then in the form:

r = ekT exp(-E/RT) exp(AS*/R) (124)

The entropy of activation AS* has some physical significance. It is
related to the probability of occurrence of the initial and activated states,
excluding the energy difference, or what may be called the relative free-

doms of the two states. A negative value of AS*, therefore, means that the

activated state involves greater restrictions on the degrees of freedom of
the molecules than the initial state.

Another operation which is performed commonly, as will be seen
later in this section, is the addition of several free energies of activation.

In this case, Equation (122) can be written as:

r kT ex-(-AF* /RT) exp(- AF*/RT) exp(-AF*/RT) (125)

For example, some of the energy required to reach the top of the energy
barrier may come from heat, some from stress, some from an electrical
field, etc. This background forms the basis for all modern thinking, and

all the theories to be discussed can be resolved simply to the form of

Equation (125).

Application to Fracture Phenomena. Machlin and Nowick17, in their
treatment of stress rupture of metals, take account of the addition of an
external stress field to the free energy of activation required for a process.
If a stress, such as shear stress r is applied, it may lower the barrier in
one direction and raise it in the opposite direction by an amount Br, as
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shown by the dashed curve of Figure 4. The activation energies for the two
directions are no longer equal, and the process takes place with a definite
net rate.
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FIGURE 4. POTENTIAL BARRIER FOR A STRESS-DEPENDENT
RATE PROCESS
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The rate of occurrence in the positive direction can be expressed as:

r+ = (kT/h) exp [-(AF* - B,)/kT] ,

and in the negative direction as:

r- = (kT/h) exp [-(AF* + B r)/kT]

The net rate is then:

r = r+ - r- = (2kT/h) exp [-AF*/kT] sinh (Br/kT) . (1Z6)

Equation (126) describes the rate of a process which is stress dependent,
such as crack propagation, plastic flow, or creep phenomena.

Cutler and Gibbs 1 8 follow a similar line of reasoning in their develop-
ment of an expression for a net rate for the fracture of glass. They assume
that the superposed potential is a linear function of the applied stress in the
neighborhood of the barrier. AF* in Equation (122) may be replaced then by
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AF'• - L M(0( - a ), where AF* is the average height of the barrier when
1 1 0 1

no stress is present, and a is the value of the stress calculated from the
theory of elasticity for a homogeneous isotropic medium. ao is that value
of a for which the final state has free energy equal to that of the initial
state. Ll(x) is the lowering of the barrier per unit of applied stress; it
accounts for the effective "area" of the moving atom, the concentration of
stress due to the finite crack of length x, and the discontinuous nature of
matter on an atomic scale.

At equilibrium, particles also pass from right to left across the
barrier (bonds mending). For this occurrence, the barrier has a height of
AF* = AF- + L (x)(a- o ), where LZ(x) has properties analogous to those1 2 0o

of L 1 (x), and accounts for the asymmetry of the potential-energy curve.

The net rate of bonds broken when a>co is then:

kT (F` 1~~ e [L (x)( - 0)1 F LZ(x) ( a - a 0)1
met = e) I eT x RT ]j e RT (127)

When a< a 0 the net rate is zero.

Cutler and Gibbs subsequently determine the velocity of crack propa-
gation from Equation (1Z7). If w is the average increase in length of a
crack accompanying separation of one pair of atoms, and x is the length of
the crack, dx/dt would be the velocity. It is given for u> ao by:

dx/dt = wrnet wkT exp(-AF'W /RT) expL1 a]
dxd =Wnet h - RT

-exp - [L.(x 1 ?OjaO} (128)

From Equation (128), it is seen that each crack is characterized by a
set of quantities w, AF*, and co, and the functions L 1 (x) and L 2 (x). These

quantities may vary from crack to crack. The L functions depend on the
shape and size of the crack and on its orientation with respect to the prin-
cipal stress. The stress at the tip of a crack increases as the crack length
increases. Therefore, the stress-concentration factors Ll(x) and LN(x)
are increasing rapidly, direct functions of the crack length x . which in-
creases with time. When testing is done with a steadily increasing load,
the applied stress is proportional to the time, so that the crack length in-
creases with the stress. For this condition, the L functions can be con-
sidered strong direct functions of the applied stress.

A plot of dx/dt versus o would have the form as shown in Figure 5.
To the left of ao, the value of dx/dt is zero because the initial state is one
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of lower energy than the final state, To the right of co. dx/dt would have

the general form of a hyperbolic-sine function of L 1 = L 2 = a constant.

Owing to the dependencies of the L functions on a, the "break" in the curve

will be somewhat sharper than a true hyperbolic-sine curve. At very low

rates of increase of a, the L's may be considered to be independent of

da/dt and T.

Qualitatively, fracture might occur either when the propagation rate

reaches an arbitrary critical value or when the crack reaches a certain

critical length. In effect, these two criteria are equivalent, since, once

started, fracture will be completed in an extremely short time.

Fracture can be defined then as occurring when dx/dt reaches a cer-

tain critical value (dx/dt)*. According to Equation (128), this corresponds

to a' s having a critical value au. Owing to uncertainty in knowing just

when fracture occurs, a* is not defined precisely. The dx/dt-versus-a

curve is so steep in the region of a* , however, that the resulting uncertainty

of a* is very small in comparison with the magnitude of a*. Thus, a* has

a specific value which is almost independent of the definition of fracture,

and each flaw is characterized by a critical value of the stress. When the

applied stress equals or exceeds this critical value a*, fracture results.
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Several other workers, such as Cox 1 9 and Poncelet 10'0, have used
the rate-process theory in studying the strength of glass. Nearly all of the
published data concern different types of tests, so caution must be used in
comparing the equations and results obtained. The two articles by
Poncelet describe efforts to understand the crushing of glass and the so-
called static fatigue. These articles have been reviewed, but their content
is not considered to be of importance at this time. It must be said that
Poncelet' s viewpoints are contrary to the opinion expressed by the majority
of investigators and, as such, require critical examination. This does not
mean to imply that there are no good thoughts in his writings, but, since
reaction-rate principles are not utilized in the sense of this review, a dis-
cussion of his papers will be deferred. The article by Cox was considered
vague because of the large number of arbitrary constants involved in his
formulations. A worth-while future effort might be an attempt to simplify
his analysis.

Saibel 2 1, using thermodynamics, has arrived at an expression for the
velocity of crack propagation which is similar to that of Machlin and Nowick,
and of Cutler and Gibbs. The basic Eyring equation for the rate of a proc-
ess is used in the form:

r = XkT exp (-AF*/RT) sinh (129)
r h kT

where X = the distance through which the unit of flow moves in one jump,
w the work done to move the unit of flow.

The unit of flow in Saibel' s theory is a hole, and a crack propagates by the
continuous formation of holes. By assuming that the work w to form the
holes is equal to the heat of activation for the process, then:

w n AH*/RT (130)
kT-

where k = R/N = gas constant/Avogadro' s number,
n = N/nh = Avogadro' s number/number of holes per mol.

Equation (129) can be rewritten now as:

r = kT exp (-AF*/RT) sinh nAH* (131)
= h RT

Saibel assumes further that AH* is given adequately by the relation:

AH* =Lm AV/V + p , (132)

where Lm = the latent heat of melting,

AV = the change in volume on passing from solid to liquid state,
V = the molecular volume of the solid at the melting point,
p = the hydrostatic component of the force acting at the point of

formation of a hole.
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Equation (132) allows the rate of crack propagation to be calculated ade-
quately from existing data. This is facilitated by remembering that
AF* = AH* - T • AS*, and by assuming that the solid is a random mixture
of atoms and holes. The entropy is given then as the entropy of mixing,
and is described by the relation:

AS*=NR[(1 +c) In(l +c)-c lnc

where c = 1/n, and varies from 0. 3 to 0. 5. Saibel' s theory has proved to
be rather sound, and calculations based on his theory have checked well
with measurements of fracture velocity in metals.

Correlation of Treatments of the Rate-Process Theorym. Three theories
have been reviewed in detail. All of them are modifications of Eyring' s
basic reaction-rate theory. It is interesting to compare them for possible
correlation of the stress-dependent term. For convenience, the equations
are rewritten below.

Machlin and Nowick:

r = 2 kT/h exp (-AF*/kT) sinh (Br/kT) ; (126)

Cutler and Gibbs, assuming L 1 (x) = L )

r = dx/dt wkT exp (-AF*/RT) sinh[FT (a o ; (128)

Saibel:

r 2kT exp (.-.F*/RT) sinh ntAH* (131)

Since k = R/N, there is no essential difference between the exponential
terms of the three equations. From examination, it is possible, at least
qualitatively, to make the following comparison for fracture:

Br ~ L 1 (x) (a - ao)nAH .

It should be remembered that Saibel' s theory applies to a state of stable
crack propagation, and the other two allow for stresses less than the criti-
cal stress required to form a stable crack. If the comparison is made for
the same conditions, the similarity becomes even more striking:

B'ac'vL(x) (ac - ao)-nAH*

where ac = 2 r.
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The conclusions apparent from this discussion are: (1) there are a number

of ways to express this same relation, and (2) the theory of reaction rates

can be a powerful tool in describing brittle fracture, if properly used and

interpreted.

A need for data to check the validity of the three theories is evident.

The effects of strain rate or stress rate and of temperature should be

studied, and better understanding of these effects should do much to clarify

the thinking on the brittle-fracture problem.

This survey shows how the principle of the rate-process theory can
be applied to the fracture strength of brittle solids. The parameters that

are obtained describe the strength of a material more completely than is

possible if the factor of time is not considered.

From the practical point of view, tests should be conducted with the

rate of loading as a controlled variable. Data from such tests can be used

to obtain parameters which describe the behavior of a material much more

completely than merely stating that the material has a strength of x pounds

per square inch.

EXPERIMENTAL WORK

The previous laboratory work on this project and the preceding review

of theories indicated that a flaw-type mechanism offered the most likely

basis for developing the desired correlations in strength properties of a

ceramic material. Most of the experimental work covered by the present

report was guided accordingly.

An interpretation of fracture phenomena on the basis of a flaw-type

mechanism appears to require consideration of three elements: (1) the

theoretical strength; (2) the stress-concentration factor of the critical flaw;
and (3) the probability of a flaw with this stress-concentration factor initi-

ating fracture. Of these three elements, the latter was most attractive

for study in the initial experimental program. According to theory, the
probability element is a statistical function of the number of flaws, and,

hence, of the effective volume under stress. Also, in Weibull' s treatment,

a theoretical background exists for such work. Finally, valuable engineer-

ing formulae might result, as evidence exists of the significant effect of

this element on fracture strength.

Such an experimental program reduces to isolating the effect of size
on strength. In addition, several incidental experiments were conducted

during the past year, for such purposes as checking materials and per-

fecting tests.
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Materials

The selection of suitable materials for investigation has been one of
the more difficult aspects of this project. As pointed out earlier, repro-
ducibility from specimen to specimen is essential. The material also must
be representative of a ceramic material and, as a large number of rather
complex specimens are needed, fabricability and cost are important factors.

An ideal material has not been found. During the year, most of the
work was with plaster of Paris. Some additional experiments were con-
ducted with the same material as used last year, K151A. a commercial
titanium carbide product. Also, preliminary tests were made using a
spark-plug porcelain. Details of each material follow.

Plaster

Two types of plaster of Paris were used, Hydrocal and Hydrostone.
Both are products of the United States Gypsum Company. Specimens were
made by casting to shape in appropriate Perma-Flex* molds.

The Hydrocal batch was prepared by first adding 300 grams of Hydro-
cal to 143 grams of distilled water. The two components were mixed slowly
in a kitchen-type mixer, taking care to eliminate bubbles from the mix.
The resulting slurry was poured slowly into the molds so as not to entrap
air. After the plaster had set (about 40 minutes), the specimens were re-
moved from the mold and cured for 1Z days in the normal atmosphere of the
laboratory.

Hydrostone specimens were prepared by adding 1500 grams of the
powder to 550 grams of distilled water, and mixing slowly for one minute
in a kitchen-type mixer. Then a bell jar was placed over the mixer, and
mixing continued for five minutes with the bell jar evacuated to about 1 inch
of mercury absolute. Specimens were removed from the molds about
30 minutes after the plaster had set, and were cured at room temperature
for 15 hours. Finally, the specimens were cured in a dryer at 110 F until
the 14th day after casting, when they were tested.

Hydrostone has proven to be the more suitable of the two plasters
because of its greater hardness and strength. Plaster specimens are inex-
pensive and fabricated easily; however, their properties are not reproduced
easily, being sensitive to slight changes in conditions of preparation and
curing. Nevertheless, with careful control, plaster has proven to be a
fairly reliable material.

*Perma-Flex Cold Molding Compound, Perma-Flex Mold Company, Columbus, Ohio.
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K151A

K151A is a nickel-titanium carbide product of Kennametal, Incorpor-
ated, with a nickel content of 20 per cent and a specific gravity of 5. 8. All
of the specimens of this material were fabricated by Kennametal.

During the course of the investigation, it was found that K151A has
two undesirable characteristics for present use on this project. It exhibited
slight plastic flow prior to fracture, thus complicating any analysis of frac-
ture behavior. Also, K151A was not suitably reproducible from specimen
to specimen. Defects often were readily discernible in the material and,
in several cases, fracture appeared to originate at one of the defects. This
problem with K151A was brought out earlier, in AF Technical Report

No. 6512.

Originally it was planned to try to use K151A specimens that had been
shaped prior to final sintering. Sufficiently close tolerances were not ob-
tained by this method on tension and torsion specimens. Accordingly,
most of the tension and torsion specimens tested this year were machined
after final sintering. The type of surface is indicated in the appropriate
section describing the experimental work.

Porcelain

The porcelain specimens were obtained from Champion Spark Plug
Company. They were made of a high-alumina, spark-plug porcelain, un-
glazed. This material is felt to represent a very carefully controlled
ceramic product, and the initial tests indicated a desirable degree of uni-
formity among specimens.

Methods

Data were obtained from room-temperature bend, tension, and tor-
sion tests. Details of these tests were given previously, in AF Technical
Report No. 6512. Some modifications were necessary in connection with
the experiments, such as changes in specimen design for size-effect studies.
Each modification is described later, in the section devoted to the particular
experiment. In addition, since the elimination of test variables is essential
to meeting the objectives, work was done directly on the development and
refinement of test methods. This work is covered independently later,
under 'Development and Refinement of Tests".
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Effect of Size on Strength

In these experiments, an attempt was made to isolate the effect of
gage-section size on strength. Briefly, the picture created by mechanistic
theories is that the measured stress is an average stress. The actual
stress over the cross section is nonuniform, with stress peaks existing in
minute volumes as the result of stress concentrations from flaws or defects.
Fracture occurs when the average (measured) stress is increased to a level
where one of the stress peaks becomes equal to the theoretical strength.
When the size of the gage section is increased, a larger number of stress
peaks will be present. If the distribution of flaws is amenable to statistical
laws, the increased population of peaks is more likely to contain one of
greater magnitude. From this, it is predicted that both measured strength
and standard deviation will decrease as the gage-section size is increased.

Preliminary Experiments

Bend tests were made on Hydrocal specimens of two different sizes,
as follows:

Nominal Gage-Section Dimensions, in.
Size Depth Breadth Length

Large 3/78 1-1/2 2-T/8
Small 3/8 1/4 5/8

The spans between points of load application and support were as follows:

SSpan, in.
Size Supports Load
Large 6-3/4 4-3/4
Small 5 3

The load was applied in 2- and 10-pound increments for the small and large
specimens, respectively, with approximately a one-minute interval between
each successive loading step. Stress was calculated in the usual manner,

Mc
from the equation a = - The following data were obtained:I

Average Strength, Standard No. of
Size psi Deviation, psi Specimens

Large 1045 45 4
Small 1365 55 5
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Similar experiments were conducted on K151A specimens of three
sizes, as follows:

Nominal Gage-Section Dimensions, in.
Specimen Size Depth Breadth Length

Large 0. 375 0.625 0.625
Medium 0. 300 0. 500 0. 500
Small 0.225 0.375 0.375

The load was applied in 200-pound increments to specimens of each sizej
with sufficient time between load applications to permit strain-gage readings
to be taken. The spans between points of load application and of support
were as follows:

Span, in.
Size Supports Load

Large 5 3
Medium 4-1/4 2-1/4
Small 3-3/16 1-11/16

The resulting data* were:

Average Strength, Standard Deviation, No. of
Size psi psi Specimens

Large 102,800 3, 300 5
Medium 120, 500 14, 120 5
Small 135, 000 13,810 6

In both of these experiments, the average strength increased with de-
creases in size, in qualitative accord with theory. Also, in each case,
except for the medium and small K151A specimens, the standard deviation
increased with size decreases, as theory predicts.

Young' s-modulus measurements were made on KI51A specimens to
indicate whether material or testing variables had any influence. Young' s
modulus, as a function of gross stress, rather than stress peaks, is ex-
pected to be independent of size, and variations with size might be attri-
buted to uncontrolled variables. Values taken from two specimens each of
the medium and small specimens were:

Young' s Modulus, 106 psi
Size Tension Compression

Medium 72.7 80.0
54.2 78.6

Small 61.9 59.7
64.3 57.7

* Data for the large-size specimens were taken from AF Technical Report No. 6512. Young's moduli in
tension and compression were considered equal in computing strengths of the medium and small specimens.
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The average values for the large specimens, from AF Technical Report

No. 651Z, were 55. 1 x 106 and 57.7 x 106 psi, in tension and compression,

respectively. A few scattered inclusions of a foreign material were ob-

served in the fracture faces of the specimens for these measurements.

Their strengths were mostly quite low, with a large scatter in individual

values, as might be expected, and were discarded. However, the values

of Young' s modulus were fairly consistent; it is doubtful whether the inclu-

sions had any appreciable influence on either scatter or the average values.

The following data* were recorded, indicating little variation with size:

Young's Modulus, 106 psi

Tension Compression

Standard No. of Standard No. of

Size Average Deviation Specimens Average Deviation Specimens

Large 55.1 2.2 9 57.7 7.0 9

Medium 57.6 4.0 5 59.6 3.5 3

Small 55.5 4.4 5 55.7 4.1 5

These preliminary experiments are considered adequate to conclude

that size effects cannot be ignored in developing even a working knowledge

of strength in ceramic materials. The data also afford some qualitative
support for the statistical treatments of the flaw-type mechanism of frac-

ture.

Attempts to supplement these bend tests with data on size effect from

tension tests did not produce acceptable data. It was concluded that a

redesign of the tensile specimen would be necessary.

Individual Effects of Gage-Section Length,
Breadth, and Depth on Bend Strength

To record more details of the size-effect phenomena, an extensive

program of bend tests was conducted on Hydrostone specimens with the

length, depth, or breadth of the gage-section as the controlled variable.

These data are considered necessary for a quantitative understanding of

strength properties from different tests. Questions existed on such matters

as whether length and periphery effects are the same, whether internal and

external flaws are equally critical, and whether the slope of the stress
gradient in a bend or torsion specimen has any influence on the fracture

strength in each case.

Table 3 gives the gage-section dimensions of the specimens tested.

The load was applied in increments, with approximately a one-minute in-
terval between each successive loading step. The load increment for each

specimen size also is given in Table 3. Stress at fracture was calculated

Data for the large-size specimen were taken from AF Technical Report No. 6512.
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I~c
from the conventional formula, a Mc which assumes equal Young' s

moduli in tension and in compression. The spans between points of load

application and of support were adjusted for the changes in specimen size
and are listed for each size in Table 3.

Strength data on each size except No. 19 were obtained from two lots
of Hydrostone specimens, designated Lots A and B. No known variables
existed between the two lots. However, Lot A was prepared and tested
first, and it is felt that the experience gained probably contributed to better
control for the fabrication and testing of Lot B.

Data from each lot are recorded separately in Table 4. The data are
plotted in Figures 6, 7, and 8 to show the individual effects of changes in

gage-section length, breadth, or depth on the observed strength values of
each lot.

TABLE 4. STRENGTH OF HYDROSTONE BEND SPECIMENS OF VARIOUS SIZES

Lot A Lot B

Gage-Section Dimensions, Average No. of Standard Average No. of Standard
Specimen in. Strength, Specimens Deviation, Strength, Specimens Deviation,
Size No. Depth Breadth Length psi Tested psi psi Tested psi

1 3/8 5/8 5/8 2190 15 210 1980 10 160
2 3/8 5/8 1 2160 16 150 1930 15 250
3 3/8 5/8 1-1/2 2060 13 180 1870 17 110

4 3/8 5/8 2 2000 17 180 1860 18 160

5 3/8 5/8 2-1/2 1980 17 160 1690 17 70

6 3/& 1/4 5/8 1990 13 130 2030 13 150
7 3/8 5/8 5/8 2190 15 210 1980 10 160
8 3/8 1 5/8 2050 9 120 1900 14 180
9 3/8 1-1/4 5/8 2010 13 130 1830 14 180

10 3/8 1-1/2 5/8 2010 14 150 1770 14 180
19 3/8 2-1/2 5/8 - - 0 -- 1600 16 140

11 1/4 5/8 5/8 1910 10 150 1910 16 240
12 3/8 5/8 5/8 2190 16 210 1980 10 160
13 1/2 5/8 5/8 2180 13 220 2100 14 230

14 5/8 5/8 5/8 2250 14 180 2140 10 140

15 3/4 5/8 5/8 2130 9 190 2160 10 210

It will be noted in Figures 7 and 8 that Lot B exhibited a more con-
sistent strength change than did Lot A, supporting the thought expressed
previously that conditions were better controlled throughout the experiments

on Lot B. Recalling that no known variables existed between the two lots,
the differences in their average strengths, evident in each of the figures

indicate some ineffectiveness in controlling all significant variables between

the two lots.
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In general, the changes in standard deviation with the individual
changes in gage-section length, depth, or breadth were inconsistent, and
the over-all trend indicates little or no size dependence of standard devia-
tion. This might indicate that statistics are not involved in the observed
size effect on strength. Standard-deviation values for a greater range of
dimensions should be obtained to establish better the effect, if any.

A possible exception to these generalizations was the variation in
Lot B of standard deviation with gage-section length (Figure 6). In this
case, there is a somewhat indistinct trend towards lower deviations with
increased lengths, in qualitative agreement with statistical theory.

The changes in average strength were consistent and pronounced with
each change in gage-section dimension for Lot B, and with changes in gage-
section length for Lot A. Also, the relationship between length and strength

was the same for Lots A and B. Although, the data were rather incon-
sistent, the breadth-strength and depth-strength trends for Lot A were of
the same general nature as those for Lot B. From these facts, one might
conclude that strength is size dependent, or that a size-dependent variable
was not accounted for in the experiments.

Average strengths decreased linearly with increases in gage-section
length. The decrease was at the rate of about 150 psi per inch, or roughly

7-1/2 per cent per inch. The strength also decreased linearly with in-
creases in gage-section breadth, at the rate of about 190 psi per inch or_
9-1/2 per cent per inch. Such decreases in strength with increases in size
agree qualitatively with theoretical expectations from a flaw-type mechanism
of fracture. Contrary to any known theory, however, average strength in-
creased with increases in gage-section depth. This increase was more
pronounced than either the length or the breadth effect on strength, within
the limits of the tests. However, the strength-depth curve was nonlinear,
with a progressively decreasing slope.

Changes in gage-section depth alone do not change the number of sur-
face flaws under maximum tension in a bend test. If only these flaws can be
critical, one would not have expected any depth effect in these experiments.
This would be the limiting case, according to theory. If internal flaws can
be critical, their number would be increased by increases in depth and,
theoretically, strength would decrease. Hence, in view of the anomalous
behavior in the strength-depth experiments, a size-dependent uncontrolled
variable is indicated as an influence in the observed size effects on strength,
and the statistical probability of the number of flaws is not wholly involved.

Some consideration can be given to the possibility of such uncontrolled

variables at this point. Both gross material variables and extraneous
stresses could be size dependent. If gross material variables were influ-
ential, one would not have expected the slope of the strength-depth curve in

Figure 8 to be opposite that of the strength-length or strength-breadth
curves in Figures 6 and 7. In other words, a change in any dimension
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would be expected to have the same type of effect. Two sources of ex-

traneous stresses appear to be the most likely possibilities: (1) those from
the stress concentration near the points of load application, and (2) those
from friction at the supports and at the points of load application.

Unfortunately, present knowledge is inadequate for treating these
possible superposed stresses rigorously. However, some approximations
might be made as to changes in their significance with the dimensional

changes. From Duckworth's analysis of bending2 . a compression stress
would be superposed on the critical tension stress in the bottom fibers of

the bend specimens by the stress concentrations near the loading points.

The special specimen design used in these tests was developed with atten-
tion to eliminating any significant influence of this superposed stress. If

this provision were ineffective, it would appear, from an approximate
expression, that the superposed stress would have no influence on the ob-

served changes in strength with breadth (Figure 7). However, it might be

expected to cause a decrease in strength with the increases in gage-section

length, if fracture always occurred at midspan where the critical tension
stress would be greatest with this superposed stress present. From this,

the stress concentration near the loading points does not appear to explain
the breadth effect, and any error from this source would cause the differ-

ence in slope between the strength-breadth and the strength-length curves

to be opposite from that observed. It might be concluded tentatively,

therefore, that the observed strength-dimension phenomena did not result

from this superposed stress. The nature of this possible effect on the

length-depth data involves too many assumptions for any meaningful conclu-
sion.

An analysis of the effect of friction on bend-test data is given later in
the report. The effect of any superposed stress from this source appears

to be a function of the depth and the moment arm, if one assumes that move-
ment occurs and the frictional coefficient is the same at all contacts. On

this basis, the nature of the change in strength with length or breadth would
be independent of friction forces. The error from these forces, if present,

would be constant in both cases. However, any superposed stress from
friction would be expected to cause the observed strength to increase with

increases in gage-section depth. Friction, therefore, might account for

the anomalous behavior in the strength-depth experiments.

Although this analysis has been speculative and qualitative of neces-
sity, the indications are that the observed breadth and length effects on bend

strength are the result of a real size dependence on strength, and the ob-
served depth effect might be influenced by error in determining the actual

stress at fracture. The analysis establishes rather conclusively that effort

should be made to determine whether testing variables influenced these

data before considering them acceptable for use in developing fracture re-

lationships. Such an effort was made through Young' s-modulus determina-

tions.
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As pointed out earlier, Young' s modulus, as a function of gross
stress, rather than a stress peak, is expected to be independent of size.
Any variation in Young' s modulus with size, therefore, might be attributed
to a change in the material or to a size-dependent error in determining
stress.

In the experiments on Lot A, spot determinations were made of
Young' s modulus, with no evidence of a size dependence, as follows:

Gage-Section Average Young' s No. of
Specimen Dimensions, in. Modulus, 106 psi Specimens
Size No. Depth Breadth Length Tension Compression Tested

1 378 5/8 5/8 2. 22 2.68 5
5 3/8 5/8 2-1/Z 2.54 2.59 3

11 1/4 5/8 5/8 2.57 2.74 3
12 3/8 5/8 5/8 2.52 2.68 5
15 3/4 5/8 5/8 2.47 - 2

After obtaining the more acceptable strength data from Lot B, these moduli
values from Lot A were considered of questionable significance. Additional
experiments were conducted.

Using the same conditions as those used to obtain the strength data in
Table 4, the moduli of specimens with two gage-section depths were meas-
ured. The specimens were prepared from a new lot of Hydrostone, desig-
nated Lot C. Results were as follows:

Gage-Section Dimensions, Average Young's No. of
Specimen in. Modulus, 106 psi Specimens
Size No. Depth Breadth Length Tension Compression Tested

11 1/4 5/8 5/8 2.30 2.44 5
15 3/4 5/8 5/8 2.54 2.76 5

On the basis of these data, a size-dependent material variable or extrane-
ous stress was present, and the strength-depth data in Table 4 were influ-
enced in a manner which would tend to cause the observed strength to
increase with depth increases.

A similar experiment was made, except that gage-section breadth
was varied, and a fourth lot of Hydrostone specimens, Lot D, was used.
The data were as follows:

Gage-Section Dimensions, Average Young's No. of
Specimen in, Modulus, 106 psi Specimens
Size No. Depth Breadth Length Tension Compression Tested

7 3/8 5/8 5/8 2.75 2.45 3
10 3/8 1-1/2 5/8 2.52 2.38 3
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These results afford further evidence that the strength-dimension data in

Table 4 were influenced by a variable other than a real size dependence of
strength. As in the case of depth changes, the observed trend in strength
with breadth changes is the same as would be expected if only this extrane-
ous variable were acting.

There is an apparent contradiction here of the previous analysis of
possible error from size-dependent variables. The analysis indicated that
no size-dependent gross material variable was present, and that the breadth
effect should not be influenced by any superposed extraneous stress. In

view of this contradiction, another breadth-modulus experiment was made
as a check, using Lot E. The results were as follows:

Gage-Section Dimensions, Average Young's No. of
Specimen in. Modulus, 106 psi Specimens
Size No. Depth Breadth Length Tension Compression Tested

7 3/8 5/8 5/8 2.52 2.88 4
9 3/8 1-1/4 5/8 2.50 2.67 4

These data tend to upset the contradiction and, in support of the analysis,
indicate that superposed stress did not influence the strength-breadth data
in Table 4. The following results of a check breadth-modulus experiment,

using still another lot of Hydrostone specimens, Lot F, added further
support:

Gage-Section Dimensions, Average Young's No. of
Specimen in. Modulus, 106 psi Specimens
Size No. Depth Breadth Length Tension Compression Tested

7 3/8 5/8 5/8 2.62 2.41 4

10 3/8 1-1/2 5/8 2.65 2.47 2

it is of probable significance that, in these two similar experiments, the

observed compression modulus was greater than the tension modulus with
Lot'E and less than the tension modulus with Lot F. As there is no known
reason for a true difference between compression and tension moduli, the
observed difference might be attributed logically to the presence of ex-
traneous .stresses. It follows that any change in this difference would be
from a change in the relative magnitudes of the resultant stresses super-

posed on the tension and compression fibers.

In an effort to learn more about the nature of the apparent superposed
stress, using Lot F, another depth-modulus experiment was made. Speci-
mens were used with longer gage sections and with loading points moved
farther from the gage section than in the previous modulus-dimension
experiments. Both of these provisions would reduce any possible error
from stress concentrations at the loading points. Also, the moment arm

was adjusted so that the load would produce a given stress which was more
nearly constant for each depth. Specific details of the experimental con-

ditions were as follows:
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Gage-Section Dimensions, Span, in.
Specimen in. Load Support
Size No. Depth Breadth Length Points Points

21 1/4 5/8 1 3-1/2 5-1/2
20 1 5/8 1 3-1/2 7-1/2

The results were surprising-

Average,
Young' s modulus, No. of

Specimen 106 psi Specimens
Size No. Tension Compression Tested

21 2.7Z 2.47 3

20 2.17 1.97 4

Here, modulus decreased with the increase in depth, the effect being
opposite that in the previous depth-modulus experiments and opposite that
expected from the trend in depth-strength data in Figure 8. The following
strength measurements show that this trend also was reversed by the change
in conditions:

Average No. of
Specimen Strength, Specimens
Size No. psi Tested

21 1790 10
20 1520 10

Over all, these modulus experiments show that the strength-depth
data obtained by the present bend-test technique are influenced markedly by
testing variables. Unless a means is developed to treat these variables
rigorously, the data in Figure 10 are of no value in contributing to an under-
standing of the effect of size on brittle fracture. The implications from this
finding, along with the lack of consistent variations in standard deviation
with length or breadth changes, the finding in Lot D of a breadth effect on
modulus, and the inconsistent differences between tension and compression
moduli in breadth-moduli experiments introduce doubt concerning the safe
use of the strength-length or strength-breadth data. This doubt is offset by
the speculations on the effect of likely extraneous stresses, and by the ex-
perimental findings of no appreciable breadth effect on moduli in Lots E and
F.

It is essential that this subject of size effect be pursued further to
meet the objectives of this project. In so doing, it appears necessary to
obtain bend-test data in which the influence of extraneous stresses is known
to be absent, and additional attention needs to be given to the possible
source of such stresses. The previous speculations, and the experimental
finding of a pronounced depth effect in Lot F, where special provisions had
been taken to reduce any effect from stress concentrations at the loading
point, indicate friction as the source. The observed inconsistencies in
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moduli behavior also indicate friction as the source of the extraneous stress.

It is well known that friction coefficients can be quite erratic; hence, the
friction force concomitant with any movement at contacts could vary greatly.

Without movement, the forces tending to produce movement also are com-
plex. Two factors enter here, the tension or compression strains and the
deflection. On the compression side of the specimen, the compression

strain and the deflection tend to produce movement in the same direction,

but on the tension side, they oppose each other. Therefore, a number of

effects are possible.

It is concluded, therefore, that extraneous stresses from friction
were the principal source of the observed testing variables. The acceptance
of the strength-length and strength-breadth data in Figures 6 and 7 as true

effects of size on strength should await further examination of the influence
of this testing variable.

It should be mentioned that, if friction is the source of error, the
effect probably would be more pronounced in plaster than in fired ceramic
bodies, whether movement occurred or not. Plaster, being softer, would

have a higher frictional coefficient and, having a lower modulus, would have
a greater force tending to produce movement.

Effect of Type of Test

As mentioned earlier, an extensive program of testing was conducted
last year on Kl51A. Elastic and strength data were obtained from bend,
tension, torsion, and compression tests. The objective of this work was
primarily to establish the effect of the type of test on mechanical-property

data, in the interests of developing relationships in the mechanical behavior

of ceramics. Secondary interests were in the actual properties of Kl51A,
because of its potential utility in aircraft engines, and in evaluating the

various tests for use in the development of ceramic bodies.

This work is covered in AF Technical Report No. 6512. For con-

venient reference, the data obtained have been taken from this report and
are included here in Table 5.

The testing of K151A was continued during the period of the present
report. Additional torsion tests were conducted; bend tests were made

with center-point loading; the stresses in previous bend tests were recal-
culated considering the effect of observed plastic flow in Kl51A; and the
possible error from friction in the bend test was studied.
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TABLE 5. MECHANICAL-PROPERTY TESTS OF K151A*

Tension Compression Torsion
Bend Test Test Test Test

Average strength, psi 102,800 55,100 407,400 80,000
Standard deviation, psi 3,300 6,750 23,300 -
Number of specimens tested 5 6 5 3

Average Young' s modulus in
tension, 106 psi 55. 1 53.9 -
Standard deviation, 106 psi z. 2 1. 0 -

Number of specimens tested 9 6 - -

Average Young' s modulus in
compression, 106 psi 57.7 - 54.2 -
Standard deviation, 106 psi 7. 0 - 1. 6 -
Number of specimens tested 9 - 6 -

Average modulus of rigidity,
10 6 psi - - 23.2
Number of specimens tested - - - 3

Average Poisson' s ratio in
tension 0.21 0.25 -
Standard deviation 0.02 - -

Number of specimens tested 9 2 -

Average Poisson' s ratio in
compressions 0. 22 - 0. 22 -

Standard deviation 0.02 - 0. 01 -

Number of specimens tested 7 - 4

*From AF Technical Report No. 6512.
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Torsion Tests

The data in Table 5 were supplemented this year by additional room-
temperature torsion tests on Kl51A.

In the first series of additional tests, four of the five specimens were

loaded by torque increments of about 60 inch-pounds (2500 psi), rather

than continuously, as in the previous torsion tests. The torque was held

constant after each applied increment while twist readings were made.
This loading procedure more closely approximates that which was used in
the bend, tension, and compression tests on K151A.

The results from this series, along with results of all earlier torsion
tests, are given in Table 6. Values for strength were calculated both from

the elastic formula, used in the past:

r = 2 (133)

and from the expression which takes into account deviations from Hooke' s

Law:

rd- + 3T) (134)
27r dO

where r = shear stress, psi,
T = torque, in. -lb,
r = specimen radius, in.,
6 = twist of specimen, radians per in.

As in the previous torsion tests, flaws were observed in the fracture
faces of each torsion specimen in this series. Fracture apparently was
initiated at one of these flaws in each case. Also, some bending was ob-
served in checks on two specimens of this series, even though particular
attention was given to adjusting the grips and remachining parts to obtain
close alignment. The specimens also were checked closely and found to be
free of warpage. The bending was indicated by strain measurements, made
in the manner described in AF Technical Report No. 6512.

Within the limits of these experiments, the change to incremental
loading appeared to lower the strength and proportional limit without appre-
ciably affecting the modulus of rigidity.

For the next series of torsion tests, the twisometer was refined for
increased accuracy, and a new torque-measuring device was used to elimi-
nate a slight drift observed in the cantilever beam used previously. These
changes are described later under "Development and Refinement of Tcsts".
Also, the specimens were machined to obtain closer tolerances than were
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TABLE 6. TORSION TESTS ON K151A WITH CONTINUOUS
AND INCREMENTAL LOADING

Modulus of
Specimen Type of Rigidity, Strength, psi Proportional

No. Loading 106 psi Elastic Plastic Limit, psi

1- 1* Continuous 23. 8 74,900 74,900 53,500
1- 3* Continuous 21.4 69,600 58,400 63,000
1-4* Continuous 24.3 95,500 95,500 59,000
1-9 Continuous 21. 0 79, 100 70,900 50,000

1-5 Incremental 21. 6 70, 000 67,000 39,000
1-7 Incremental - 67,000 - -
1-8 Incremental 24.2 52,600 51,600 29,000
1-10 Incremental - 72,000 - -

Note: No strain measurements were obtained on Specimens 7 and 10 owing
to malfunctioning of the twisometer.

* Data on these specimens from AF Technical Report No. 6512.
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obtained in the "as-sintered" specimens used in earlier work. Continuous,
rather than incremental, loading was used.

Table 7 presents the resulting values of strength, calculated from the
elastic formula, Equation (133), and of modulus of rigidity. The shear
stress-strain curves from this series were all practically straight lines,
making any choice of a proportional limit questionable and the use of the
plastic expression for stress unnecessary. Qualitative checks indicated
no bending in the tests.

TABLE 7. RESULTS OF REFINED

TORSION TESTS

Modulus
Specimen of Rigidity, Strength,

No. 10 psi psi

2-2 23. 7 82,500*
2-3 24. 2 100, 100

2-4 22. 0 104,700
2-6 22. 5 103,500*
2-7 22.2 96,500
2-8 22.2 105,300

2-9 22. 1 98,000*
2-10 23.7 90,500*
2-11 22.1 99%000

Average 22. 7 97,800
Standard Deviation 1. 7 6,930

* Flaws were observed in the fracture faces of

these specimens.

The average modulus of rigidity from this series, 22. 7 x 106 psi, is
lower than that recorded in Table 5, 23.2 x 106 psi, and more closely
agrees with the values calculated from Young' s modulus and Poisson' s ratio
from the tension and compression tests assuming isotropy, 21.3 x 10 6 and
22.0 x 106 psi, respectively.

The average strength in Table 7 was lowered somewhat by including
those specimens having obvious flaws in their fracture faces. Disregarding
these flawed specimens, the remaining five specimens have an average
strength of 101,100 psi with a standard deviation of 3,400 psi. Of particular
interest is the fact that, for all practical purposes, this is the same strength
and standard deviation as obtained from the bend test, recorded as 102,800
psi with a standard deviation of 3,300 psi. No flaws were observed in the
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bend-test specimens used to obtain these values. Earlier, with less refined
torsion tests on porous and nonporous porcelain, reported in RAND Report
R-209, the torsion strength was one-half the bend strength.

Certain reasons exist to expect the same strengths in torsion and
bend tests, as observed here, if the tests are precise. The torsion speci-
mens all fractured with a helical break about 450 to the specimen axis.
This fracture is normal to the axis of the maximum tension component, indi-
cating that tension stress rather than the shear stress was critical. This
tension stress would be equal to the shear stress. Bend-test specimens
also fractured in tension. Furthermore, in both tests the tension stress
was a maximum at the surface and decreased to zero at the specimen axis.
From this, one m ight conclude that, with adequate refinements, bend and
torsion tests yield equal strength values.

However, the distinct possibility exists that the observed equality
between torsion and bend tests was coincidental. Factors to be considered
include:

1. The torsion tests were made on specimens with machined
surfaces, using continuous loading, as opposed to "as-
sintered" surfaces and incremental loading for the bend
tests. Table 6 indicates that the two types of loading might
give somewhat different strengths. Although no truly com-
parative data exist, the higher strength in these torsion
tests than in earlier ones might be owing to the change in
surface, rather than the testing refinements and freedom
from flaws in the material.

2. There is a compression stress normal and equal to the
tension stress in the torsion test, while only a uniaxial
tension acts on the critical region in bend tests. Some
theories predict different strengths under uniaxial and
biaxial stress systems.

3. Evidence exists of error; probably from friction, in the
bend test; however, this error probably is within the
limits of practical consideration of the equality in bend
and torsion tests from data at hand.

4. The pronounced size effect observed earlier in tests on
plaster must be taken into account before any positive
conclusion on the ratio of torsion and bend strengths is
possible.

Future work on this project is expected to resolve these questions.
Meanwhile, the torsion tests have furnished valuable and interesting data
in guiding such work.
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Bend Tests With Center-Point Loading

Strength and Young' s modulus values were determined on KI51A with

the bend test modified. Rather than applying two equal loads at symmetri-

cally located points outside the reduced gage section, as was done earlier

to obtain the bend-test data in Table 5, a single load was applied at midspan.

The specimen design, span, method of loading and supporting, and other
features of the test method were unchanged.

With the modification, the test represents that commonly used in
ceramic practice, and the data obtained were intended for use in estab-

lishing the effect of type of bend test. Several factors appear to be involved

in this simple change, including:

1. On the basis of a flaw-type mechanism of fracture, a

higher fracture strength would be expected with center-

point loading because of the reduced size of the "gage

section".

2. A greater superposed compression from the stress con-
centration near the applied load would be expected with
center-point loading, making the apparent fracture strength

and Young' s modulus higher.

3. Any friction effects would be less with center-point loading,
causing the apparent fracture strength and Young' s

modulus to be lowered.

4. Center-point loading does not permit placing a resistance
strain gage on the top (compression) fibers, and any

difference between compression and tension moduli in the
material cannot be taken into account, without a new
method of strain measurement.

5. With center-point loading, a gage on the bottom surface
measures strain over a gage length, rather than at the

point where maximum strain occurs. For this reason,

the actual strain is probably greater than the measured

strain, causing the observed value of Young' s modulus

to be high.

The initial tests with center-point loading were made on a different

lot of K151A bend specimens than was used to obtain the data in Table 5.

The results were as follows:
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Specimen Strength, Young' s Modulus,

No. psi 106 psi
1 92,900 55.0

2 73,1 00 54.5
3 95,900 55.3

Average 87,300 54.9

This average strength, 87,300 psi, is considerably below that found with
two-point loading, 102,800 psi. An opposite effect was obtained earlier in
tests of a porcelain, reported in RAND Report R-Z09. In these earlier tests,

center-point loading yielded higher strength values. A microscopic examina-
tion of the K151A specimens used for the present comparison tests showed

distinct material variations. Surface cracks perpendicular to the specimen
axis were observed on the specimens used in the tests with center-point

loading, but not on those tested with two-point loading. These cracks un-
doubtedly lowered the strength, and the data are not considered suitable for

comparing the two tests.

To extend this effort, three K151A bend specimens from the same lot

as those used to obtain the data in Table 5 were fractured with center-point
loading. Two of these specimens, K-OB-9 and K-OB-10, had been stressed
previously to about 70,000 psi. The data obtained were:

Specimen Strength,

No. psi
K-OB-9 96, 100
K-OB-10 95,000
K-OB- 11 98,600
Average 96,800

Although these strengths are still less than the average from tests with

two-point loading, 102,800 psi, and fail to confirm the trend found in por-
celain, they show rather conclusively that material variations influenced
the earlier comparison on Kl51A. The previous stress history appears to

have lowered the strength of Specimens K-OB-9 and K-OB-10, making
further comparison tests necessary for acceptable data. Over all, it is

apparent that present knowledge of fracture and testing variables is inade-
quate for generalizations on relative strength values from the two bend
tests.

Plastic Bending of K151A

To date, calculations of stress from bend-test data have assumed that

the material obeyed Hooke' s Law. This assumption, of course, is invalid

for Kl51A, which exhibited a proportional limit. Recently, the method de-
scribed by Nadai2 3 was used to account for the deviations from Hooke' s

Law in correcting the strength values obtained from the bend tests on K151A

recorded in AF Technical Report No. 6512.
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According to Nadai, the outer fiber stresses in a rectangular bar
under pure bending can be expressed as:

__t_ __ d(M¢2)t 1(135)

at + ac bh% d d

where t, ac = unit stresses in outer tension and compression fibers,
respectively,

b = breadth of gage section,
h = depth of gage section,

M = external moment,
S= slope of the tangent to the neutral axis.

Equation (135) reduces to:

tac M + - (136)
at+ ac bh(2 )

Nadai also derives the following relation:

dc t

ac dc - (137)
c tdc

where t, Ecc = unit strains in outer tension and compression fibers, re-
spectively.

Using this expression for ac, Equation (135) becomes:

a t- M ____ d __ (138)
ath (2 _+_

Nadai' s analysis shows that k can be expressed as:

(ct + Ec) 1 (139)
Zh

where 1 = length of gage section.

In determining tensile stresses, two plots were made from the bend-
test data: M versus 0 and Et versus cc. Values of dM/d b and d Et/d cc were

taken from tangents to these plots, and substituted into Equation (138). The
resulting stresses at fracture, compared with those from the usual elastic

expression, were as follows:
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Specimen Fracture Strength, psi
Number Equation (138) Elastic Equation
K-OB-l 101,200 101, 200

-3 100,000 100,200
-4 98, 800 99, 800
-5 103.,700 104,200
-7 1082400 1082800

Average 102,400 102,800

These values indicate that the deviation from Hooke' s Law was so
slight that the errors introduced from neglecting it were negligible. The
slight inaccuracies in measurements and nonuniformity between specimens
undoubtedly introduce larger errors.

Friction in Bend Tests

In all bend tests to date, specimens were loaded and supported on
external surfaces. There is very likely either motion or a tendency for
motion in these surfaces. Such motion would be opposed by friction forces
at each loading and supporting point. Effort was directed toward de-
termining the error introduced by neglecting the effect of these forces on
the stress in the extreme top or bottom fibers.

Frocht2 4 briefly discusses this matter, indicating that the friction
forces are as represented in Figure 6, with the force F. greater than F1 .
The friction effect thus becomes equivalent to an axial tension force and a
couple of opposite sign to that of the applied bending moment. It is particu-
larly significant to size-effect studies that Frocht points out that the friction
couple is especially pronounced in deep beams and at high loads.

If IL is the coefficient of friction at all contacts, the friction forces
in Figure 6 are:

F_ P and F _< gP. (140)

The inequalities in these expressions represent the conditions in which the
tendency to move is not great enough to produce movement.

The stresses in the gage section resulting from the forces acting in
Figure 9 can be determined by considering a cross section m-n. Summing

moments at the neutral axis of the cross section gives M = Pa (A + Fl

where M is the internal moment at the cross section. The stress in the
extreme top or bottom fibers of the cross section m-n then becomes:

F2 -bF L6 a- (F + F ] " (141)
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F2 p

dh

n F1
a P

FIGURE 9. FRICTION FORCES IN THE BEND TEST
A- 2193

Examination of this expression shows that, if F 2 #' F 1 , the stress in
the top fibers will not be equal in magnitude and opposite in sign to the

stress in the bottom fibers. This factor could account for the differences

found in tension and compression moduli from bend tests, rather than any
true difference in these moduli. The inequality F 2 ý F 1 would result from
unequal forces tending to produce movement, with movement suppressed at
any or all contacts, or from different frictional coefficients at the contacts,

with movement occurring at all contacts.

Consider the case of maximum friction in the system with the same

coefficient at all contacts, i.e., Fl = F 2 =pP. Equations (140) and (141)
combine to yield: 6P

6P~ (a- ih) .(142)

bd 2

To determine the error, this equation considering friction must be com-
pared with the equation for stress neglecting friction. With equal moduli

in tension and in compression, the latter equation is:

b + 6Pa (143)

bd
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The error then becomes:

E = - a/h- (144)

In the bend tests on K151A reported in AF Technical Report No. 6512,
a = 1 and h =0.625. Letting' = 0.4, the value given in Marks' Handbook
for garnet on hard steel, from Equation (144), the error becomes:

0.4
E = - 1/0.625 - 0.4 - 0.333 or =- 33.3%7o

This means that superposed stresses could have opposed the bending stresses
in the extreme fibers in an amount to make the actual stresses as little as

three-fourths of those recorded. The fact that the compression and tension
moduli in bend tests to date have always been unequal, and that they agree
fairly well with those obtained from direct tension or compression tests,
establishes that the error was much less than this calculated, 33. 3%.

However, the possible friction effect certainly becomes of great concern in
this work where precise data are required, particularly in view of the great
error it apparently is capable of introducing.

Experiments also were made in the interests of establishing the effect
of friction on recorded bend-test data. Stress-strain curves were obtained
from bend tests on three K151A specimens in the same manner as used to
obtain the values in Table 5. Each specimen was loaded three times to a

maximum stress of about 55, 000 psi. A stress-strain curve was plotted
for each loading. This procedure was duplicated on each specimen with all
contact surfaces greased with High-Pressure Lubriko M-6, a product of
Master Lubricant Company. All surfaces of the loading yoke and supporting
jig where lateral movement or rolling might occur were greased.

No significant differences could be detected between comparable stress-
strain curves with greased or ungreased contacts. Both tension and com-
pression curves were obtained. Values of Young' s modulus from the data
are given in Table 8.

These data indicate either that no movement occurred or that friction
effects are not significant. If there had been any movement, the grease
would be expected to reduce the friction forces, causing a change in the

value of Young' s modulus if these forces were appreciable. On the other
hand, the forces tending to produce movement may have been insufficient to

overcome friction even with the surfaces greased. In this case, the error
would not be changed by the greasing.

On this basis, the maximum possible error from friction as given by

Equation (144) does not appear to be present.
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TABLE 8. YOUNG'S MODULUS OF K151A FROM BEND

TESTS WITH GREASED AND UNGREASED

CONTACT SURFACES

Young' s Modulus, 106 psi

Specimen Greased Surfaces Ungreased Surfaces

No. Tension Compression Tension Compression

12 57. 0 57. 0 57.0 57. 0

13 55. 0 56.0 57.0 56. 8

14 55. 7 55. 7 55. 7 55. 7

Effect of Strain Rate

Before the resistance of ceramics to load can be defined, the effect

of strain rate, among other factors, must be established. Detailed research

on strain rate is contemplated as the next new phase of this project. A

preliminary experiment was made during the period of this report.

In this experiment, two groups of Hydrostone specimens were frac-

tured in the tension test with the crosshead speed as the only known variable

between the two groups. In one case, the speed was 0.005 inch per minute

and, for the other group, it was 1.00 inch per minute. The loading, of

courses was continuous, rather than incremental.

Table 9 gives the results. It is surprising that the specimens tested

with the greater strain rate had the lower strengths. This behavior is con-

trary to the results of other experimenters25. No suitable explanation is
apparent at this time. As indicated previously, however, the future pro-

gram for this project contemplates a much more thorough examination of

strain-rate effects.

Bend Tests on Porcelain

A new material was introduced into the program during the year with
initial tests of a high-alumina spark-plug porcelain, produced by Champion

Spark Plug Company. As pointed out earlier, probably as high a degree of

control is used in the manufacture of this material as any ceramic product.
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TABLE 9. EFFECT OF STRAIN RATE ON THE
STRENGTH OF HYDROSTONE IN
TENSION

Crosshead Speed,
Specimen in. Strength,

Number per minute psi

SEL- 1-29 0. 005 1142
SEL- 1-38 0. 005 1099
SEL- 1-25 0. 005 1105
SEL- 1-36 0. 005 1184
SEL- 1-42 0.005 1119
SEL- 1-21 0. 005 1073
SEL- 1-28 0. 005 1073

Average 1113.6

Standard Deviation = 35.3

SEL- 1-34 1.00 725
SEL- 1-26 1.00 776
SEL- 1-33 1.00 934
SEL---42 1. 00 864
SEL- 1-20 1. 00 803
SEL--- 43 1.00 874
SEL- 1-27 1.00 858

Average 833.4

Standard Deviation 65.04
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For this reason, it is particularly attractive in the interests of reducing the
effect of material variables from the data obtained for this project. Also,

it represents a larger class of ceramic bodies than either the K151A or

plaster, the only materials used for the past two years.

Initial tests indicated good reproducibility and the ability to fabricate
specimens of the required complex shapes to the desired tolerances.

Specifically, 23 specimens gave an average strength of 33,520 psi with a
standard deviation of 2,205 psi when fractured in the bend test. Six de-

terminations of Young' s modulus in the bend test gave values ranging from
40.0 x 106 to 43.8 x 106 psi in tension and from 40.6 x 106 to 43.6 x 106 psi

in compression. Stress was proportional to strain up to fracture in each

case.

DEVELOPMENT AND REFINEMENT OF TESTS

The precise measurement of stress and strain under various con-
trolled conditions is required to meet the objectives of this project. Prob-

lems in testing methods are introduced by this requirement. Effort during

the past year to solve these problems is covered in this section.

Torsion Test

The twisometer described in AF Technical Report No. 6512, used for
measuring twist in the torsion test, was modified during the year. Owing

to repeated failures and irregular behavior, the electronic system for

measuring the optical levers was abandoned. For the replacement, the

light beams from each of the two mirrors mounted on the specimen were
intercepted by a flat screen, and the vertical distance between the two re-

sulting light spots measured.

Also, the torquemeter used in the torsion test was found to be slightly,

but objectionably, unstable. To correct this condition, the cantilever beam

with attached strain gages was replaced with a mirror mounted on the
dynamometer bar. The image of an illuminated scale was viewed in the

mirror with a telescope. Twisting of the bar produced by the torque was

indicated on the scale, such that calibrations showed 0. 01 inch of the scale

to be equivalent to eight inch-pounds of torque. Scale divisions of 0. 05

inch could be read with the telescope to ±0.01 inch.
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Tension Test

The modified Martens extensometer for high-temperature tension
tests described in AF Technical Report No. 6512 was calibrated. The
equipment functioned satisfactorily in a trial run at 800 F.

Figure 10 shows the arrangement of this strain-measuring system.
The telescope and scale are mounted rigidly on the wall to insure that the
lengths of the various optical levers do not change, thus maintaining a
constant calibration factor for a given set of mirrors.

The system was calibrated with SR-4 strain gages, using a steel speci-
men at room temperature. A linear relationship existed between the two
strain-measuring devices. A one-inch change in scale reading being
equivalent to 75 microinches per inch of strain, as measured by the SR-4
gages. The scale readings could be estimated to 1/8 inch of change, equiva-
lent to about 9 microinches per inch.

Vibration from the hydraulic pump of the testing machine had to be
damped out for satisfactory performance of the extensometer. Brass fins
on each extensometer arm, extending down into a cup of oil, accomplished
the damping without interfering with the normal movement of the arms.

From the trial runs, the extensometer appears to have the following
advantages:

1. Ability to measure small extensions

2. Usefulness at high temperatures, probably up to 2200 F with
sapphire rods and refractory clamps

3. No complex electrical circuits

4. Ease of extending its range with little loss of sensitivity, by using
larger mirror shafts

On the other hand, poor features of the extensometer are as follows:

1. Extreme care is required in setting up

2. Two operators are required for continuous-loading tests

3. High-quality mirrors are required and the diameter of the
mirror shafts is very critical. Each mirror-shaft combina-
tion must be calibrated separately

The sensitivity, which is independent of temperature, is felt to out-
weigh the disadvantages and to warrant use of the extensometer.
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FIGURE 10. HIGH-TEMPERATURE EXTENSOMETER
B -2194
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Attempted size-effect experiments on plaster using the tension test
failed to produce acceptable data. Difficulties with stress concentrations at
the grips and with superposed bending were encountered. One of these diffi-
culties resulted from surface discontinuities at the parting lines of the molds.
To reduce these defects, the specimen design was changed from circular to
rectangular cross sections. With the new design, all parting lines in the
molds could be placed at corners. No tests have been made using the new
design.

A photoelastic study was made of bending in the tension test. The
model was cut from a sheet of CR-39 resin so as to have a rectangular gage
section of 3/8 x 1/2 inch. Otherwise, the model was the same as the tension
specimen described in AF Technical Report No. 6512.

Small holes, 0.019 inch in diameter, were drilled in the gage section
of the model. These holes were to act as stress concentrators and, thereby,
produce a fringe pattern which would become asymmetrical if an eccentric
load were applied. Although this scheme produced the desired results, a
more sensitive indicator of eccentric loading was found. When a specimen
of any photoelastic material is being subjected to uniform tension, a uniform
shading exists at all times. But, with an eccentric load, dark and light areas
coexist in the specimen.

The results indicated that, with normal precautions in placing the
tension specimen in the grips, the stress is distributed uniformly auto-
matically, and this uniform distribution is retained as the load is increased.
However, if the grips are not aligned, the stress is nonuniform, and re-
mains nonuniform with any shifting of the adaptor rods in the ball-and-socket
joints.

Bend Test

Photoelastic studies also were made on bend-test models. The models
were cut from a sheet of CR-39 resin, 3/8 inch thick. Three models were
the same except for depth. The depths of the gage sections of these speci-
mens were 1/4 inch, 1/2 inch, and 3/4 inch. The gage sections were con-
nected to the shoulder sections by elliptical fillets. The span between
loading points was 3 inches and that between the supporting points was 5
inches.

Each model was loaded so as to produce a stress of 2700 psi in the
outer fibers of the gage section. The resulting fringe patterns are shown
in Figures 11, 12, and 13. It was noted in these tests that:

1. The fringe patterns came in evenly upon application of load;
hence, the stress was proportional to the load
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79556

FIGURE 11. STRESS PATTERN IN BEND-TEST
MODEL HAVING 1/4-INCH DEPTH

79558

FIGURE 12. STRESS PATTERN IN BEND-TEST
MODEL HAVING 1/2-INCH DEPTH
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79559

FIGURE 13. STRESS PATTERN IN BEND-TEST
MODEL HAVING 3/4-INCH DEPTH

2. There were no stress concentrations in the gage sections

3. Within the limits of the technique. the stresses in the top
and bottom outermost fibers were equal.

Consideration also was given to the effect of the inner fibers on bend-
test data. For a bend test, the stress distribution is such that the high
stresses occur in the outer fibers. It follows that fracture logically should
start at or near the surface; however, the inner fibers, which are at lower
stresses, may exert an influence on the strength of the beam. Ideally, an
I-beam with a web of zero thickness would eliminate the influence of inner
fibers. A bend test on such a specimen would approach a compression test
in one flange, and in the other flange, a tension test. A tentative design
was developed with a modification of such an I-beam as the gage section.
Fabrication problems have delayed the construction of such a specimen.

A new bending jig was designed and built. This new jig, which is
shown in Figure 14, is similar to the bend jig described in AF Technical
Report No. 6512, in operating principle, except that its construction per-
mits the loading points and supporting points to translate with more freedom
as the specimen deflects. Each of these points is supported on ball bearings.
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FIGURE 14. JIG FOR LOADING BEND-TEST SPECIMENS
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Special provisions also were made for ease in setting up for testing. Since
the jig permits the loading and supporting points to move axially on ball
bearings, it tends to alleviate the frictional forces present.

Combined-Stress Testing

A determination of the validity of the various fracture theories in-
volves a series of tests in which the state of stress existing at the point at
which fracture initiates is known. The most general state of stress is that
of triaxial stress in which, at the point considered, there are stresses
acting on any three mutually perpendicular planes. Obviously, the most
desirable type of test would be one in which a triaxial state of stress exists.
Several difficulties confront triaxial testing, however. To indicate the
areas in which the difficulties are likely to arise, the following points are
included:

1. The design of a specimen in which the true state of stress
causing fracture is known. Most proposed designs intro-
duce extraneous stresses which are difficult to determine.

2. In a specimen in which a uniform state of stress does not
exist from point to point, fracture is initiated at a critical
local region. The effect on the ultimate failure of the
specimen of the surrounding regions which are not in a
critical state is vague.

3. Strain measurements at what would be considered the
gage region would be difficult.

4. In the theory of fracture, a so-called surface of rupture
exists. Mathematically, this is expressed as F (al, a2, u3) =0

where oa1 oZ 0'3 are principal stresses. In testing, a
limitation arises from the fact that a given type of test will
explore only a part of the total surface.

5. The path of loading should be a straight line from the origin to
the point of fracture in the ol; 2o, u3 - axis system. This
requires that loading devices must be coordinated so as to
apply the load in a predetermined manner.

It is of interest to note that little triaxial testing has been conducted
which has been considered both complete and satisfactory. In each case,
either the results are thought to be of questionable validity or they cannot
be interpreted. A detailed discussion of these tests is given by Nadai 4 .
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As a consequence of the difficulties involved in triaxial testing, it is
felt that, for the present, combined-stress tests should be limited to bi-
axial testing, for which some of the above difficulties are not present.
Specifically, Items 1, 2, and 3 can be eliminated partially or wholly.

Capacitance Micrometer

Preliminary trials of the capacitance micrometer described in AF
Technical Report No. 6512 were made at 300 F. In these trials, the
micrometer was stable; switching the furnace power on and off had little
effect on its behavior.

In this micrometer, strain or contraction of the specimen causes a
decrease in the spacing between two parallel capacitor plates, resulting in
a change of capacitance. This change is translated into a voltage differ-
ence, which is measured by a suitable recorder. The calibration setup
utilizes a fine-thread screw feed to regulate the spacing between the
capacitor plates. The movement of the screw feed, and hence, the change
of capacitor-plate spacing, is measured by a dial gage outside the furnace.
With this calibration setup, the relationship of change in capacitor-plate
spacing, or strain, and response of the capacitance micrometer was de-
termined directly.
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